

Exploring multi-academy trust approaches to artificial intelligence

Lily Wielar and Jon Andrews

January 2026

About the Education Policy Institute

The Education Policy Institute is an independent, impartial, and evidence-based research institute that promotes high quality education outcomes, regardless of social background. We achieve this through data-led analysis, innovative research and high-profile events.

Acknowledgements

This report has been produced as a part of a project funded by the Nuffield Foundation. The Nuffield Foundation is an independent charitable trust with a mission to advance social well-being. It funds and undertakes rigorous research, encourages innovation and supports the use of sound evidence to inform social and economic policy, and improve people's lives. The Nuffield Foundation is the founder and co-funder of the Nuffield Council on Bioethics, the Ada Lovelace Institute and the Nuffield Family Justice Observatory. This project has been funded by the Nuffield Foundation, but the views expressed are those of the authors and not necessarily the Foundation.

Find out more at: nuffieldfoundation.org

Bluesky: [@nuffieldfoundation.org](https://twitter.com/nuffieldfoundation)

LinkedIn: Nuffield Foundation

About the authors

Lily Wielar is a Researcher at the Education Policy Institute. In her time at EPI she has co-authored work on falling pupil rolls, pupil attendance, and the features of effective school groups. Prior to joining EPI, she graduated from LSE with an MSc in Applied Social Data Science and with a BA in Education Studies from University College London.

Jon Andrews is Head of Analysis and Director for School System and Performance at EPI. He has published a wide range of studies including: 'The performance of multi-academy trusts and local authorities', 'School revenue balances in England', 'Access to special schools in England', and 'Grammar schools and social mobility'. He worked in the Department for Education from 2003 to 2016 as a statistician.

Contents

Contents	3
Executive summary	4
Methodology	8
Literature review	8
Roundtables	8
Part 1: How are MATs using artificial intelligence?	10
Reducing and managing teacher workload	10
Supporting personalised learning	11
Improving school administrative processes	12
Part 2: How are MATs implementing artificial intelligence?	14
Strategies for implementation	14
Role of central leadership	16
Part 3: How do MATs make decisions regarding AI?	18
Scaffolding decision-making responsibility	18
Balancing short-term and long-term goals	18
Using evidence and research	19
Part 4: How are MATs evaluating the effectiveness of AI?	20
What are MATs measuring?	20
How are MATs measuring effectiveness?	20
Part 5: Legal and ethical considerations	22
Upholding data protection	22
Navigating commercial landscapes and market realities	22
Mitigating bias and risk	23
Addressing inequalities and the digital divide	24
Conclusion and recommendations	25
References	27
Annex A: Roundtable discussion questions	31
RT 1: How are MATs harnessing the opportunities and approaching the challenges of AI?	31
RT 2: How are MATs developing their approach to AI strategy, governance and efficacy measurement?	31
Annex B: Roundtable participants	32

Executive summary

Artificial intelligence (AI) has the potential to transform the way in which schools are run through more efficient data collection and analysis, more accurate assessment setting and marking, personalised and adaptive learning, and improving teachers' workload.¹ However, evidence of its benefits and its limitations remains limited.² Multi-academy trusts (MATs) provide an opportunity to support individual schools and build capacity and expertise across the sector.³

This study builds on the existing evidence base by considering multi-academy trusts' approaches to using artificial intelligence. It incorporates the outputs from a literature review of how teachers are using AI and findings from two roundtables with representatives from MATs and other sector leaders.

How are MATs using AI?

MATs use AI to support teaching, learning, and administration. Though adoption varies widely, roundtable participants noted that in its broadest sense, AI is embedded in everyday tools, making its use almost unavoidable.

Advocates of AI suggest that it has the potential to reduce teacher workload, particularly through lesson planning and resource creation. AI also assists with communication tasks, freeing teachers for other priorities. However, roundtable participants cautioned that efficiency gains may not reduce overall workload, as freed time often leads to more responsibilities.

AI can also be used for personalised learning, tailoring content to individual pupil needs and providing feedback to both students and teachers. These tools could be used for vulnerable groups, including pupils with SEND and EAL, through features like translation and accessibility aids. However, concerns exist around reduced human interaction and algorithmic bias.

As in other sectors, AI has the potential to improve administrative efficiency in financial forecasting, policy drafting, HR, and IT. Integration with Management Information Systems (MIS) can support interventions, such as identifying attendance issues, though ethical challenges remain, particularly around decision-making transparency.

How are MATs implementing AI?

The government has invested in AI development through support for the content store, connectivity improvements, and resources like Oak National Academy's AI tools.⁴ Despite this, roundtable participants reported a gap between AI's promised benefits and actual impact.

¹ Sampson and Pothong, 'A Learning Curve?'

² Ofsted, '"The Biggest Risk Is Doing Nothing": Insights from Early Adopters of Artificial Intelligence in Schools and Further Education Colleges.'

³ Sampson and Pothong, 'A Learning Curve?'

⁴ Department for Education, 'Teachers to Get More Trustworthy AI Tech, Helping Them Mark Homework and Save Time'

Roundtable participants discussed a range of approaches to adopting AI within their trusts. Bottom-up strategies rely on teacher-led experimentation and feedback, often through small pilots, ensuring policies reflect classroom realities and preserve autonomy. This approach fosters innovation but requires complementary top-down oversight for consistency and safety.

Top-down strategies vary: some trusts enforce strict approval processes, while others integrate AI considerations into existing policies (e.g., safeguarding, data privacy) rather than creating standalone AI policies.

Leaders stressed that AI adoption must align with clear educational goals—whether improving efficiency or pupil outcomes—and be informed by cognitive science. Central leadership can play a role in shaping narratives around AI, appointing AI champions, and promoting digital literacy for staff, pupils, and parents. Accountability measures, such as data protection impact assessments (DPIAs) and contract negotiations, fall under central teams, though larger trusts have more leverage than smaller ones. However, larger trusts reported challenges in oversight across a number of schools, particularly where schools have autonomy over the curriculum.

Engagement with national networks like EdTech Hubs supports knowledge sharing and best practice dissemination. Roundtable participants supported the continued growth of such networks.

How are MATs taking decisions in relation to AI?

Current guidance offers little clarity on how MATs should approach decisions about AI, leaving trusts to determine what tools to adopt, how to use them, and how to manage AI literacy among teachers and pupils. Combined with the influx of AI products marketed to solve diverse problems, this lack of structure creates what one leader described as a “wild west” environment.

The research literature and roundtable participants discussed scaffolding decision-making across multiple levels rather than centralising all choices. Participants highlighted that decisions will inevitably happen at multiple levels and school leaders and teachers will need to make decisions that best suit their context. Therefore, trusts may need to define which decisions occur at the trust level – such as approving AI tools – and which are delegated to schools or classrooms, like integrating AI into lessons.

Trusts inevitably have to balance short-term goals with long-term considerations like evolving technology, contract lengths, and value for money. Decision-making also needs to allow for relationships with unions, parents, local authorities, and regulators, requiring stakeholder engagement to address concerns about workforce implications and pupil use.

Finally, while guidance recommends evidence-based decisions, robust research on AI effectiveness in education is limited. Larger MATs may conduct internal evaluations or hire independent assessors, but smaller trusts often lack resources, relying instead on staff feedback and peer recommendations. This limits their ability to make data-driven decisions, underscoring the need for sector-wide collaboration and clearer frameworks.

How are MATs measuring the effectiveness of AI?

Evidence on AI's impact in education remains limited and is complex because it involves assessing both the technology and its implementation.

Current evaluation methods used by roundtable participants include surveys, stakeholder feedback, and anecdotal evidence, capturing both quantitative usage data and qualitative perceptions. However, these approaches struggle to isolate AI's specific effects and can be influenced by contextual factors. Disaggregated analysis is essential to understand differential impacts on groups such as high- versus low-attaining pupils or novice versus experienced teachers. Larger trusts sometimes conduct their own evaluation of pilots or fund independent evaluations, though such efforts are rare compared to AI's widespread adoption.

Attainment remains a key metric, but participants stressed that AI's influence extends beyond academic results. There can also be a disconnect between the kind of metrics promoted by providers and what is useful for schools – for example, the use of engagement statistics rather than pupil progress.

The Education Endowment Foundation's randomized trial on ChatGPT illustrates the need for robust, independent research and effective dissemination of findings. Participants also called for government involvement in oversight, evaluation, and guidance with initiatives like the Edtech Evidence Board.

Legal and ethical considerations

AI adoption in education raises significant legal, ethical, and practical challenges for MATs. AI systems can often operate as a “black box,” making it difficult to understand decision-making and ensure rights are protected under the UK General Data Protection Regulation. Trusts complete Data Protection Impact Assessments (DPIAs) for AI tools, but roundtable participants felt they did not necessarily understand the tools well enough to do so and highlighted the potential for a national source of information for some of the key tools.

AI models often lack transparency about training data, making bias detection difficult. Roundtable participants reported promoting safe usage through AI literacy programs, continuing professional development, and technical controls. Due diligence includes risk assessments, negotiating terms, and implementing safety policies. Participants also noted that AI can have an impact on relationships between parents and schools – including using AI to generate complaints – adding to workload.

AI tools are largely developed by private companies, with trusts having to accept standard terms and conditions that do not necessarily reflect their educational contexts. Larger trusts reported being better placed to negotiate and conduct due diligence, while smaller trusts face resource burdens. Roundtable participants were also mindful of being reliant on providers who may not be able to provide support – or themselves be sustainable in the longer terms – or whose incentives and motivations did not necessarily align with their own.

Finally, AI adoption highlights inequalities: some schools have advanced technologies, while others lack aspects of digital infrastructure, widening the digital divide. These disparities risk exacerbating existing inequalities between schools and pupils.

Recommendations

Recommendation 1: The Department for Education should continue to evaluate the effectiveness of Edtech (including AI) products and their use through the Edtech Evidence Board project. In addition, the sector should be incentivised to share their own approaches to evaluating the products they are using, with larger trusts well placed to support other schools in the system.

Recommendation 2: Create research informed guidance on developing AI and digital literacy for education providers AND for initial teacher training (ITT) programmes.

Recommendation 3: Larger trusts should lead networks of support working with both smaller trusts and individual schools with the Department for Education considering ways that this could be incentivised. The Department for Education and the Department for Science, Innovation and Technology should work across government to ensure that disadvantaged communities (either through economic circumstances or their location) are not left behind as technology progresses, ensuring access to devices and high-speed reliable internet.

Recommendation 4: The Department for Education should consider the merits of providing the key information that trusts and schools will need for completing DPIAs for the more widely used AI products while being mindful of the fact that the process of producing a DPA provides a structured approach for data controllers to consider their individual circumstances.

Methodology

This study builds on the existing evidence base by considering multi-academy trusts' approaches to using artificial intelligence. It incorporates the outputs from a literature review of how teachers are using AI and findings from two roundtables with representatives from MATs and other sector leaders.

Literature review

Drawing from relevant research studies and reports published from 2023 onwards we first carried out a literature review to provide an overview of how teachers currently use and perceive AI in today's educational landscape. The review considered:

- Where and how is AI being used by classroom teachers to support teaching in compulsory education?
- What are teachers' perceptions of barriers to using AI in the classroom?
- What are teachers' perceptions of AI and the barriers to its use?
- What are the limitations within the current body of literature and what is the future of AI and AI research for effective classroom teaching.

Google Scholar and ERIC were used to source peer-reviewed academic articles, and a simple Google search for further reports was used to supplement the research found in the academic databases.⁵

We elected to implement a narrow window of publication to capture the most recent research and better capture the effects of the recent development of generative AI. Therefore, we restricted our search to the first 60 results of each database resulting in a total of 120 articles plus five supplemental reports found on Google.

Duplicates were removed and article abstracts and executive summaries were then screened for relevance to the above research questions. Research conducted with only pre-service teachers or solely focusing on higher education was excluded. A total of 20 articles and reports passed screening and were read in their entirety to inform our findings. Those papers are listed in the accompanying bibliography.

Roundtables

In late 2025, we convened two roundtables bringing together MAT leaders and those leading on digital strategy within their trusts, with other AI in education stakeholders. Roundtable discussion centred around how MATs are approaching the challenges and harnessing the opportunities of AI and understanding how AI tools are being implemented and evaluated across trusts.

⁵ The following string was used: ("AI" OR "artificial intelligence") AND ("teaching" OR "teacher" OR "teachers" OR "classroom") and results were filtered for articles published from 2023 to present day.

The roundtables were led with a short presentation summarising current themes and key findings in the literature relating to the research questions listed below. Discussion was then guided by the series of questions in Annex A.

The first roundtable focussed on the ways in which AI is currently being used to address the following research questions:

- How are MATs currently using AI?
- How is AI implemented across trusts?

The second roundtable focussed on how academy trusts are developing their approach to AI strategy, governance and efficacy measurement to address the following research questions:

- How are MATs assessing the effectiveness of the use of AI?
- What are the decision-making processes that MATs adopt when deciding on an AI strategy?
- How are MATS managing legal and ethical considerations?

We are grateful to all those who participated in the roundtables. We have used those discussions to inform the content of this report, but it does not represent a settled account of the views of each group or any individual participant or organisation.

Part 1: How are MATs using artificial intelligence?

Multi-academy trusts (MATs) are engaging with artificial intelligence (AI) in a wide variety of ways, with approaches differing across trusts, schools, phase, and curriculum subject. As the technology continues to evolve so do its possible uses.

Given its proliferation in areas including email autocompletion and online searches, a roundtable participant observed that “[AI] is pretty hard not to use”, and is already embedded in many of the tools educators and pupils use daily. In the following section we outline the main ways in which MATs are currently using and can potentially use AI to support trust operations, teaching, and learning.

Reducing and managing teacher workload

Workload is a key factor in teacher retention.⁶ Pressures are closely linked to the volume of tasks teachers are required to manage, and therefore MATs are considering whether the implementation of AI has the potential to reduce workload.

AI is used to support lesson planning and resource creation.⁷ The British Computing Society found that over half of AI-using teachers use AI to design and support assessment followed by 40 per cent of teachers who report using AI for lesson planning. Diliberti *et al.* similarly found that nearly half of teachers report using AI to create lesson plans, assessments, or assignments.

The Education Endowment Foundation (EEF) studied the effect of ChatGPT on teachers' time spent lesson planning through a randomised controlled trial.⁸ Teachers randomly assigned to use ChatGPT were supported by an online guide to using ChatGPT for lesson planning. The EEF found that effectively using ChatGPT can reduce teachers' lesson planning time by 31 per cent whilst retaining lesson quality.

Advances in generative AI enable teachers to produce lesson plans, classroom activities, worksheets, and assessment questions more efficiently. Beyond lesson planning, AI can assist with communication tasks, such as drafting emails to parents or summarising student progress for stakeholders, freeing valuable teacher time.⁹ One risk in using AI for such tasks is that AI tools have not necessarily been trained on data that is specific to the school system in England, and it is why the UK Government has invested in the “content store” of reliable data.¹⁰

While AI offers potential and use cases to help manage and support teacher workloads, MAT leaders caution that its impact on teacher retention may be overstated. Given the breadth and intensity of responsibilities already faced by teachers, many are sceptical that teachers will feel

⁶ Martin, ‘Workload review’

⁷ Department for Education, ‘Generative Artificial Intelligence (AI) in Education’

⁸ Roy *et al.*, ‘ChatGPT in Lesson Preparation - A Teacher Choices Trial’

⁹ Ofsted, ‘The Biggest Risk Is Doing Nothing: Insights from Early Adopters of Artificial Intelligence in Schools and Further Education Colleges’

¹⁰ Department for Education, ‘Teachers to Get More Trustworthy AI Tech, Helping Them Mark Homework and Save Time’

the effects of a reduced workload. AI's ability to free up extra time for teachers will likely be directed towards more work and could fail to reduce overall workload. Some leaders argued that teachers will just become “more efficient”, and the results of increased efficiency may exacerbate burnout.

Supporting personalised learning

While AI may have the potential to deliver personalised teaching and learning to pupils at scale.

Pupil-facing AI tools can assess prior knowledge and tailor curriculum and learning materials to individual pupil needs.¹¹ Examples include specialist tutoring apps, adaptive learning programs, and AI tutoring agents offering written and interactive feedback.¹² Though an autumn 2023 survey of UK teachers found that only 7 per cent of teachers directly use AI in lessons.¹³

One trust reported using an AI-powered app to deliver timely feedback to students and identify parts of the curriculum that students are struggling to grasp. Another discussed the potential of these tools to simultaneously provide feedback to teachers enabling them to easily analyse the effectiveness of the personalised learning tool and identify which pupils benefit most.

Personalised learning through AI supported tools can be particularly valuable for supporting vulnerable groups, including pupils with SEND, those with English as an Additional Language (EAL), and pupils with low prior attainment.¹⁴ One roundtable participant highlighted how their trust uses AI to automate translation for EAL pupils making materials more accessible. Automated analysis of pupils with low prior attainment can also help quickly identify and effectively address gaps in knowledge, supporting improved outcomes.

For pupils with SEND, AI driven capabilities, such as text-to-speech and other accessibility features, can address individuals' specific needs and improve engagement. However, the use of AI with pupils with special educational needs raises particular issues with respect to bias,¹⁵ in addition it is important that AI tools are seen as a support to teachers rather than to replace them.¹⁶

“We feel passionately that teaching is here to stay. Teaching is the fundamental part of what we do, the human connection.”

Aspects of teaching delivery may call for more novel forms of AI beyond virtual learning platforms, adaptive learning systems, and generative AI tools. Virtual assistants or immersive virtual reality technologies may offer the potential to directly support teaching delivery. Exploring how AI can be used to support students with learning difficulties, Dieker et al. explored how AI can be used to support students through the use of virtual assistants integrated directly into four inclusive

¹¹ Bessemer, 'AI In Education'

¹² National Education Association, 'Report of the NEA Task Force on Artificial Intelligence in Education'

¹³ Fletcher-Wood, 'How to Improve Behaviour and Wellbeing, and How You're Using AI in Schools'

¹⁴ Samson and Pothong, 'A Learning Curve?'

¹⁵ Dieker et al., 'Using an Artificial Intelligence (AI) Agent to Support Teacher Instruction and Student Learning'

¹⁶ Department for Education, 'The Safe and Effective Use of AI in Education - Leadership Toolkit Video Transcripts'

elementary schools.¹⁷ The virtual assistant was designed to support pupils with disabilities by improving their social skills by using natural language processing and biometric and vision-based signals to provide feedback and help regulate stress. While the study found that virtual assistants successfully increased students with disabilities' peer-to-peer and teacher interactions, it also argues that interpretation of emotion indicators can be highly subjective with biases including age, ethnicity, and culture.

Chiu et al.'s study of 123 Grade 10 students' use of chatbots in the classroom reveals that teacher support and student expertise is needed for AI tools to be successfully embedded in content delivery.¹⁸ Despite such barriers, continued experimentation with more novel forms of AI and further research to understand their capacity to directly support content delivery, particularly for students with learning difficulties, is warranted.

However, as emphasised in both the literature and by roundtable participants, many generative AI-driven personalised learning tools have so far only been piloted on a small scale with limited groups of pupils.¹⁹ As a result, the significant investment required to adopt these technologies can be difficult to justify given the current uncertainty about their effectiveness and measurable impact on pupil attainment. This highlights a critical consideration for MATs: while AI offers the promise of personalised learning at scale, its effective implementation requires careful evaluation to ensure resources are directed towards interventions that genuinely improve pupil outcomes and experiences.

Concerns were also raised in the roundtable around the realities of the digital divide. If tools are going to be the answer to supporting individual pupils and tackling the disadvantage gap then we need to address the fact that many students do not have access to individual devices at home, that schools are not in a position to provide them, and that there is a geographical divide in access to high-speed internet. Otherwise, the implementation of AI solutions risks exacerbating rather than solving attainment gaps.

Improving school administrative processes

Artificial intelligence (AI) can be applied to support the administrative and back-office functions of multi-academy trusts. While these uses are often less visible than classroom applications, they offer opportunities for improving operational efficiency and effectiveness.

Financial management. As in other sectors, AI has the potential to support MATs in financial forecasting and in data informed decision making.²⁰ One roundtable participant noted how trusts use AI for invoice matching, increasing administrative efficiency.

¹⁷ Dieker et al., 'Using an Artificial Intelligence (AI) Agent to Support Teacher Instruction and Student Learning'.

¹⁸ Chiu et al., 'Teacher Support and Student Motivation to Learn with Artificial Intelligence (AI) Based Chatbot'.

¹⁹ Ling, 'Use Cases for Generative AI in Education: User Research Report'.

²⁰ Altair, 'How AI Can Transform Education: Practical Insights for Multi Academy Trusts (MATs)'.

Policy and procedure writing is another way in which AI is being used to reduce administrative workload.²¹ Trusts must regularly update and produce a high volume of statutory and operational policies. Generative AI is increasingly being used to draft and update statutory forms and other documentation.²² Roundtable participants discussed the development of AI agents to integrate MIS data, government guidance, and safeguarding information, and while in the early stages, is being used by local authorities to write Education Health and Care Plans.²³

Human resources (HR) and information technology (IT) functions can also benefit from AI in ways that are not necessarily unique to multi-academy trusts. AI tools can enhance cyber threat detection and help trusts better manage and organise their large, diverse workforces. As seen in other sectors, these efficiencies can lead to workforce reduction through the consolidation of administrative teams such as HR and IT.²⁴

Finally, **the integration of AI with Management Information Systems (MIS)** could form part of that data-driven decision-making within trusts. One prominent example provided by a roundtable participant, is pupil attendance. AI-powered MIS modules enabled the proactive identification of pupils with poor absence, saving time that would otherwise have been spent manually tracking attendance. However, the use of AI within the context of MISs raises particular challenges about the ethical use of AI in decision making about individuals.²⁵

²¹ Ofsted, 'The Biggest Risk Is Doing Nothing'.

²² AI in Education, 'Shape of the Future'.

²³ Keer, 'The Risks and Benefits of Using Artificial Intelligence to Power EHCPs'.

²⁴ McManus, 'Why Firms Are Merging HR and IT Departments'.

²⁵ Samson and Pothong, 'A Learning Curve?'

Part 2: How are MATs implementing artificial intelligence?

Development of AI tools for use in education is supported in part through investment from the Department for Education (DfE) including nearly £1 million to EdTech providers for the continued development of AI tools to reduce teacher workload.²⁶ A further £3 million from the Department for Science, Innovation and Technology has been earmarked to aid in the construction of a “content store” to enable the development of high quality educational large language AI models alongside a £2 million investment in AI tools for Oak National Academy.

To aid in the implementation of AI, DfE is also investing £45 million to enhance digital connectivity in schools and trusts across England.²⁷ Collectively, these investments underscore the government’s recognition of AI’s growing relevance within education and provide important context for understanding how national policy is shaping the adoption of AI.

To ensure that AI delivers its maximum positive impact within multi-academy trusts while mitigating risks, effective implementation is key. However, there is often a gap between the potential of AI tools and the results they actually achieve in practice, with tools often not delivering the efficiencies they are said to result in. A roundtable participant said:

“There is a disconnect between... what an AI platform can offer and what the actual impact is when it is implemented by a trust.”

Bridging this gap requires multi-academy trusts to develop strategies that support the practical integration of AI.

Strategies for implementation

Bottom-up approaches

AI strategy is often driven from the bottom-up, meaning that ad-hoc usage by teachers and pupils tends to drive the development of AI use policies at a trust level.²⁸ Such patterns of usage are not necessarily surprising, as similar trends have been seen with other technologies. Trust leaders highlight the need for bottom-up approaches in the context of a rapidly evolving AI market, where new tools and capabilities are constantly emerging, making top-down management challenging. By building from the ground up, trusts can ‘meet teachers where they are’, tailoring policies and support to the feedback they receive from teachers on what is working and what is not working for teaching and learning. Furthermore, bottom-up approaches ensure that teacher autonomy is preserved, allowing teachers to drive best-usage and practice.

Trusts can also facilitate bottom-up approaches through small piloting and trialling programmes that can be used to develop implementation strategies.²⁹ Starting small enables trusts to observe

²⁶ Department for Education, ‘AI in Schools and Colleges’.

²⁷ Department for Education, ‘AI in Schools and Colleges’.

²⁸ Latham and Montacute, ‘Artificial Advantage? AI in the Classroom and the Inequality Gap’.

²⁹ Bessemer, ‘AI In Education’; ‘Ling, Use Cases for Generative AI in Education: User Research Report’.

impacts more effectively, identify best practice, and develop context-specific policies before scaling initiatives across entire trusts. Such experimental implementation supports more informed decision-making and reduces the risks associated with large-scale deployment.

Despite the benefits of bottom-up approaches, centralised oversight remains essential. Centralised management ensures that all schools, teachers, and pupils are able to access AI and use it safely. This underscores the need for a complementary balance between teacher-led bottom-up approaches and top-down centralised approaches to the implementation of AI.

Top-down approaches

Top-down approaches are a central and necessary part of trust management, providing central guidance for the diverse range of schools they serve. Yet, these approaches can vary quite drastically across trusts when it comes to AI. Some MATs opt for a stringent approach, managing AI tool approval centrally.

Yet, as more AI tools are created, approving tools centrally can become quite difficult, particularly for larger trusts. As a roundtable participant said:

“it’s an organisational challenge as much as technical challenge”.

Many trusts have therefore migrated away from such management to create more flexible strategies promoting best practice that supports schools to contextually and safely navigate AI usage.

The development of top-down approaches to AI implementation is ultimately codified into trust policy. Two approaches to trusts’ AI implementation emerge. Firstly, trusts may develop specific AI policies whose contents specifically relate to the use and implementation of artificial intelligence across the trust, schools, and classrooms.

Secondly, and the approach taken by many larger trusts, trusts can rely on existing structures and procedures, updating existing policies to include relevant information regarding AI:

“We’ve not launched an AI policy, we’re gradually baking in decision making into every other standard of our work because it’s just business as usual”.

So, schools may make amendments to policies surrounding data privacy or safeguarding to reflect the impact of AI.

Users of this approach argued it enables them to stop ‘putting the tool first’ and instead focus on teachers and students. Regardless of the approach, the strength of the MAT system is that it places these decisions in the trusts’ remit, enabling them to tailor their approach to AI to their trusts’ specific needs.

One of the most common themes within the current literature that was consistently echoed by roundtable participants, is the need for AI adoption to be informed by a specific educational goal. Whether that goal is to improve administrative efficiency, to reduce teacher lesson planning time, or to improve pupil outcomes, it is vital that trusts ensure there is a clear and transparent aim and actionable approach to achieving said aim through use of AI. MAT leaders specifically highlighted

the need for both the design of AI tools and for the implementation of the tool in the classroom to be driven by cognitive science and knowledge of what constitutes effective teaching and learning. Outside of the classroom, AI use for back-office functions should similarly be driven by a clear understanding of what the tool should be accomplishing. Framing AI use through clear goals enables transparency and allows for trusts to more readily measure impact.

Engagement with national networks

Developing effective and safe approaches to using AI is not a simple or easy task, especially given the many other priorities trusts are constantly navigating. Engaging with national networks enables trusts to access shared experience and expertise, best practice, and practical insights from across England.³⁰ National groups such as EdTech Hubs and the AI in Schools Initiative create networks which facilitate communication between trusts and AI providers and encourage the sharing of knowledge and experience with other school groups. Formal participation in or informal engagement with these national networks is a purposeful part of trusts' implementation of AI, enabling them to more successfully promote the use of artificial intelligence.

Roundtable participants consistently emphasised the importance of receiving support through engagement with national networks and pushed for the continued growth of such networks.

Role of central leadership

Developing useful narratives around AI

MAT leaders, who form part of trusts' central leadership teams, highlight the importance of developing productive narratives surrounding AI. Central leaderships see part of their role and responsibility to help teachers and school leaders navigate the buzz around AI through crafting useful and realistic narratives on using AI within education. This means moving away from conversations that frame AI as 'it can do everything' and instead disseminating practical insights into how AI can be used in specific settings.

Building and sustaining expertise

Helping central teams disseminate knowledge and craft useful narratives around AI are 'AI champions.'³¹ AI champions are appointed leaders who have expertise both within education and within the technological sector.³² Central teams noted how helpful these roles are in building and sustaining expertise on effective use of AI and many felt that appointing digital leads is no longer something optional for their schools. Instead, designated responsibility to oversee AI, digital skills, technology was seen as something that should be engaged in with the same intensity as safeguarding and attendance.

³⁰ AI in Education, 'Shape of the Future'.

³¹ *ibid*

³² Ofsted, 'The Biggest Risk Is Doing Nothing'.

Yet, given the many responsibilities leaders have, AI can be seen as a ‘side-hustle’ in which senior leaders “*Don’t see [AI] as integral to improving GCSE results or Ofsted outcomes*” and instead see it as an add on. Designating responsibility to specific leads can avoid AI being considered as optional and neglected for other responsibilities.

Essential to the effective use of AI is digital literacy. Recognising the need for digital literacy across all staff, central leadership teams in MATs have an important role to play in developing expertise.³³ Developing expertise through investment in AI literacy not only applies to teachers but to pupils, parents, and school leaders.

Central leadership teams can offer and promote training sessions or workshops for teachers on how to effectively use AI and how to best teach their students how to use AI.

“We’ve built AI-taught units from Year 1 through our computing curriculum – use, bias, safety, ethics. We do it with parents too.”

Digital literacy can be further supported through the dissemination of knowledge regarding new developments and research on AI in education. Given some of the broader concerns around its use, we believe that participation in training should be monitored across trusts to ensure that all staff are not only learning how to use AI effectively but are also aware of the risks and ethical considerations in its use.

Accountability

Central leadership teams hold responsibility for maintaining accountability. In practice, this refers to completing data protection impact assessments (DPIA), negotiating terms and conditions with AI providers where able, developing acceptable use policies, and retaining oversight over how AI is being used within trusts – or what a roundtable participants referred to as ‘due-diligence.’ MAT leadership teams are best positioned to monitor and evaluate AI use across their schools through their access to legal teams and centralised structure.

Larger trusts are more easily able to hold AI providers to account and due to their large size and resourcing have more power to negotiate terms and conditions within contracts. This underlines the necessity of national oversight to ensure that even smaller trusts and school groups are able to advocate for safe use of technology with providers.

But larger trusts can also face challenges in developing solutions that work across their schools, particularly when schools have freedom over issues such as curriculum and exam boards.

“All of our academies are different. They’re on different curriculums, they’re on different timetables, they’re on different exam boards and trying to make it bespoke for each of the academies is our greatest barrier at the moment.”

³³ AI in Education, ‘Shape of the Future’.

Part 3: How do MATs make decisions regarding AI?

Current guidance and literature reveal there is a lack of clarity regarding how school groups should make decisions on AI. Instead, it is up to trusts to decide what AI they should use, how they should use AI, how they should evaluate AI, and to what extent they should be managing how classroom teachers and pupils teach and learn about AI. Coupled with the number of products and tools being pitched to trusts to solve a wide range of problems, the lack of guidance for decision-making can lead to a landscape that one roundtable participant leading on digital strategy referred to as “feel[ing] like it’s the wild west.”

In the following section, we summarise the recommendations made in the current literature on how MATs *should* make decisions and highlight some of the current strategies and considerations MATs make to navigate decision-making for AI.

Scaffolding decision-making responsibility

MATs at the roundtables said that not all decisions on AI use can be made and enforced centrally. Decisions about AI implementation will inevitably occur at multiple levels, and trusts need to equip school leaders and teachers with the expertise to make informed choices that best support their specific school and classroom contexts. Delegating responsibility for decision-making across trusts allows AI use to be better tailored to specific educational settings.³⁴ Roundtable participants highlighted the diversity of the schools within their trusts and the necessity of creating and enacting policy that provides clear guidance while still promoting adaptability for different contexts. Therefore, trusts may need to define which decisions are made at the trust level, such as approving AI tools, and which are made at the school or classroom level, for example developing AI literacy or determining how to integrate AI into lessons.

Scaffolding decision-making responsibilities also allows for training and support to be better tailored around specific contextual needs.

“When we first had our AI strategy we found out people weren’t using it. We realised it doesn’t apply to geography teachers, it doesn’t apply to IT, it doesn’t apply to use PE. So now we have a primary strategy and we have a secondary strategy, but now we’re going to have a subject strategy as well”

Teachers in different subjects or in different settings will use AI differently and require different training, support, and accountability. Where there are designated AI leads, they can support tailored, contextually specific decisions about AI.

Balancing short-term and long-term goals

When making decisions, MATs will naturally need to balance short-term and long-term goals. In the short term, it is important that trusts consider ‘What problem are we trying to solve?’ and decisions about AI use should be led by pedagogical theory and clear educational goals. In the

³⁴ Latham and Montacute, ‘Artificial Advantage? AI in the Classroom and the Inequality Gap’.

long term, trusts will need to consider the implications of rapidly developing technology³⁵ and how such a quickly evolving landscape shapes practical decisions on what types of AI to invest in and how long to sign contracts for as well as more strategic decisions about designing policy and evaluation. More importantly, trusts will inevitably need to consider the value for money of AI tools. This means trusts need to predict and plan how to measure the impact on efficiencies and other teaching and learning outcomes.

Navigating relationships with unions, parents, local authorities, and the government amongst others complicates trust's ability to make decisions. For example, roundtable participants discussed the complexities associated with using AI and managing union concerns about the future of trust workforces, its separate use by pupils and parents, and external bodies such as Ofsted. A substantial part of trusts' decision-making strategies involves bringing together and organising stakeholders to help support trusts in making informed decisions.³⁶

Using evidence and research

Current guidance recommends that MAT leaders use evidence and research to inform decisions. In the space of AI there is a lack of robust evidence evaluating effectiveness and identifying best practice.³⁷ As a result, it is often difficult for MATs to make informed decisions. Instead, leaders must rely on feedback from staff and pupils and word of mouth from other educational institutions. Where possible, larger MATs are conducting their own assessments of AI or hiring independent evaluators. It is difficult for smaller school groups to dedicate resources toward evaluation and as a result they may be less able to make data-driven and evidenced-informed decisions.

³⁵ Ofsted, 'The Biggest Risk Is Doing Nothing'.

³⁶ Bessemer, 'AI In Education'.

³⁷ Chartered College of Teaching, 'Edtech Evidence Board Project'.

Part 4: How are MATs evaluating the effectiveness of AI?

Evidence on the use and impact of AI in education remains limited. The roundtable discussions highlighted the ways in which AI is already being deployed and underlines the necessity of research and evaluation to understand exactly how AI is used and what implications it holds for pupil learning, teacher retention, and school improvement. In response to such needs, a group of 23 MATs came together in late 2024 to publish a framework and recommendations for integrating AI in education although there is not yet any available data on how widely the framework is being used or its efficacy.³⁸

What are MATs measuring?

Evaluating the effectiveness of AI is difficult, as evaluators must consider the effectiveness of the technology itself as well as the effectiveness of the technology's implementation. Roundtable participants discussed the difficulties of deciding what outcomes can and should be measured. They noted that it was easier to measure impact when AI is used for trust operations through increases in efficiency than when it used to support classroom teaching and learning. Yet, even in this case measurement and evaluation is complicated as not all staff may wish to accurately report efficiencies through AI use that may have future implications for people's jobs.

In relation to teaching and learning, trusts considered the importance of measuring outcomes beyond attainment. While they recognised the importance of using attainment as a measure of effectiveness, they noted that AI has implications for pupils' social and emotional learning and interpersonal relationships.³⁹ There can also be a disconnect between the measures that are key to a school and those that are collected and reported by AI tools. For example, one roundtable participant reported an apps reliance on engagement statistics that measure whether a particular tool is being used but not whether it is improving progress and outcomes for a child.

How are MATs measuring effectiveness?

Roundtable participants reported measuring and evaluating AI use through surveys, stakeholder feedback, and anecdotal evidence. Through surveys, trusts had been able to collect both quantitative measures regarding use, as well as qualitative indicators of teachers' and pupils' perception and experiences. Capturing both these elements is a vital part of successful evaluation⁴⁰, yet evaluation through surveys can make it difficult to disentangle the effects of AI specifically and feedback can be subject to other contextual factors. Roundtable participants also emphasised the importance of measures needing to be disaggregated so that an evaluation can analyse effectiveness across different characteristics. For example, it is important for trusts to know if AI is more effective for their lower or higher attaining students, or if more or less experienced teachers find it more useful for lesson-planning.

³⁸ AI in Education, 'Shape of the Future'.

³⁹ Samson and Pothong, 'A Learning Curve? '.

⁴⁰ Ofsted, 'The Biggest Risk Is Doing Nothing'.

Due to the lack of a robust evaluation more broadly, some larger trusts dedicate resources to conducting their own pilots, contracting evaluations through AI providers themselves, or independent evaluators.

“We found that spending three hours a week on one learning app reduced chances of getting top grades compared with students who didn’t use it at all”

Yet, this type of evaluation is rare, especially when considered against the prevalence of AI use. MATs and other stakeholders have expressed a continued need for more independent assessment that leverages robust methodological designs and longitudinal data to accurately disentangle the effects of AI.⁴¹

An example of this form of evaluation is the Education Endowment’s Foundation randomised controlled trial of the effectiveness of ChatGPT for reducing teachers’ lesson-planning time.⁴² Whilst this robust independent evaluation is important in its own right, it is equally important that the results are effectively disseminated to educators. Difficulties accessing study results can hinder MATs ability engage with the evaluation of AI.⁴³ Additionally, there are increased calls for the government to play a larger role in oversight of AI through commissioned evaluation and guidance on effective AI use. The recent announcement of the Edtech Evidence Board serves as a prime example of how the government can support trusts to effectively use AI, yet more guidance and research is needed.⁴⁴

⁴¹ Latham and Montacute, ‘Artificial Advantage? AI in the Classroom and the Inequality Gap’.

⁴² Baxter, ‘Teachers Using ChatGPT – alongside a Guide to Support Them to Use It Effectively – Can Cut Lesson Planning Time by over 30 per Cent’.

⁴³ Chartered College of Teaching, ‘Edtech Evidence Board Project’.

⁴⁴ Department for Education, ‘Education Secretary Outlines Plans to Modernise Education Sector’.

Part 5: Legal and ethical considerations

Upholding data protection

Situated as a data-driven tool, AI raises concerns surrounding data privacy and the rights of individuals as set out in the UK General Data Protection Regulation (UK GDPR). Yet, ensuring these rights and holding entities responsibility when they violate the UK GDPR is not always straightforward. Trusts hold significant responsibility for ensuring that pupil and staff data is being appropriately managed and safeguarded, but systems that use algorithms or machine learning to make decisions are a “black box” that can frequently make it impossible to know how a decision has been made and hence whether an individuals’ rights have been violated.⁴⁵

To ensure data protection principles are upheld, trusts must complete data protection impact assessments (DPIAs). DPIAs are needed when there is a ‘high risk to the rights and freedoms’ of individuals.⁴⁶ Any AI tool that directly uses personal data will then need to be included in trusts’ DPIAs. Yet, trust leaders note that it can be difficult to accurately access and plan to mitigate data protection risks of AI tools especially if they are not experts in the technology. This has led to calls for the development of a centralised platform in which DPA’s can be carried out on new educational technologies that schools can then view and access.⁴⁷

Navigating commercial landscapes and market realities

Given that many AI tools and technologies are developed and sold through private commercial companies, MATs are positioned as consumers and have to agree to terms and conditions. Roundtable participants noted that they are often offered standard terms and conditions to agree to, and these do not necessarily reflect the unique operational and educational context of schools. Larger trusts are typically better equipped to navigate these contractual and compliance challenges, possessing the leverage to negotiate terms and conditions with suppliers and conduct rigorous due diligence. In contrast, smaller trusts may find reviewing and negotiating agreements across multiple providers to be time-consuming and resource intensive, creating a significant administrative burden.

Many EdTech and AI tool providers are small operations, relying on limited staff and infrastructure to support their AI tool. These smaller providers are riskier for schools to invest in as their sustainability is more dependent on variability in the commercial market. One roundtable participant highlighted this issue, noting that their trust takes measures to ensure that such small-scale providers tools do not have a ‘strategic’ role in their trust. Building on this, participants noted that it was important for trusts to ‘know who they are dealing with’ and to understand that these providers’ incentives and motivations may not always align with trusts’ goals. Particularly, several participants voiced concerns that many providers, including big players like Google and

⁴⁵ Samson and Pothong, ‘A Learning Curve?’.

⁴⁶ Department for Education, ‘Data Protection in Schools - Data Protection Policies and Procedures - Guidance - GOV.UK’.

⁴⁷ AI in Education, ‘Shape of the Future’.

Microsoft, are based in the United States. The dominance of US tech companies raises issues that tools are not contextually specific to education in England and are trained on the basis of K-12 education, or what one roundtable participant termed ‘an America first’ approach. Addressing these concerns is beyond the responsibility of trust leaders and underlines the need for more government involvement in AI in education.

Mitigating bias and risk

AI tools are created and trained on large volumes of data yet there is frequently a lack of transparency about exactly what data is used to train models, how models use this data to generate new predictions and outputs, and whether it is suitable for the use to which it is being put.⁴⁸ This lack of transparency, coupled with the complexity of AI algorithms to non-experts, means that bias can often go undetected. For example, an AI tool that identifies students who may be at-risk for attendance problems or failing exams may rely on problematic assumptions regarding pupil characteristics. It is important that all AI tools used in schools are carefully evaluated for possible bias. To successfully evaluate whether bias is prevalent in AI tools will require greater transparency from providers and more oversight from national regulatory bodies.

Within educational settings, AI tools pose significant risks to safeguarding and online safety. Recognising these risks, trusts feel they have a responsibility to promote safe usage of technology, including AI tools, for their staff and students.⁴⁹ To promote safe usage, trusts are working to develop AI literacy skills through workshops, continuing professional development (CPD), and digital skills curriculum for their pupils.

Yet, roundtable participants highlighted that there will always be risks when using AI tools despite training on digital skills and literacy. As such, they also take steps to implement technical controls to prevent mistakes and misuses of technology. This forms part of a larger ethos of due diligence. In the roundtables, leaders mentioned that their priority regarding AI management was safety.

To ensure that AI tools and their use is not posing significant risks or harm, trusts conduct due diligence. This refers to the steps trusts undertake to educate their staff and students on using AI safely, understand and negotiate terms and conditions with providers, conduct DPIAs and risk-assessments, and develop their own technical controls and appropriate use policies.

Trusts also need to be alert to the impact that AI can potentially have on the relationships between pupils and teachers and between schools and parents. One participant noted that teachers were once asking whether pupils were using AI to provide answers but now pupils are asking whether teachers are using AI to plan their lessons. In addition:

“What we've heard quite a lot is schools talking about the impact of parents using AI to generate complaint emails.”

⁴⁸ Samson and Pothong, ‘A Learning Curve?’.

⁴⁹ Altair, ‘How AI Can Transform Education: Practical Insights for Multi Academy Trusts (MATs)’.

Which means, as well as the potential to reduce the workload on teachers, AI has the potential to add to it.

Addressing inequalities and the digital divide

As the use of AI develops, inequalities are emerging.

“Go to one of our schools and it’s VR, AI, immersive learning. Go 300 yards down the road and there’s no tech at all.”

Not all trusts and schools have the same access to technology and not all students within schools have equal access.⁵⁰ These inequalities, also termed as the digital divide, have concerning implications for future social mobility or as one trust leader noted, ‘There’s a huge divide between the outcomes that can happen in those schools.’

AI tools have the capacity to exacerbate existing inequalities between schools and trusts, as trusts that are already relatively successful will have more time and resources to dedicate towards integrating AI whereas struggling groups are less likely to have the capacity to engage with artificial intelligence. A roundtable participant highlighted that these inequalities are already evident at a system-level between the state and independent sector, where 1:1 pupil to devices ratios are already commonplace. Limited resources and capacity in the state sector leaves some trusts feeling that they risk being left behind.

Within the state sector, research has primarily focused on schools that are already starting to use AI. This study has attempted to incorporate a wider range of school groups than previous studies, but roundtable participants still noted their involvement with AI may still not be typical. While these cases do offer extremely valuable insights into AI in education it is equally important that insights from less visible trusts and schools are sought. Specifically, it is important to understand the reasons that some schools have not engaged with AI or other digital technologies.

Within trusts, there is also often variation between individual schools in their engagement with AI. While variation in how AI is used is to be expected, and in fact encouraged as schools should adopt AI implementation to their specific context, variation in access is concerning. One trust leader noted that while their trust has mandated that all schools provide AI literacy training to their staff, this is not happening in practice. This example demonstrates the importance of trust leadership in managing and addressing inequalities within their school group, particularly when it comes to AI. Similarly, trusts have responsibility for addressing inequalities between pupils. Initiatives, such as supporting 1:1 pupil to device ratios, can help mitigate the digital divides between pupils.

⁵⁰Latham and Montacute, ‘Artificial Advantage? AI in the Classroom and the Inequality Gap’.

Conclusion and recommendations

The growth in the use of AI creates both opportunities and challenges for the school system in England. This study has focussed on the experiences of MATs within that system.

It highlights the ways in which trusts are already using AI to improve school administration and back-office operations, reduce teacher workload, and enable personalised learning for pupils at a wider scale. Though, for many, there remains a gap between the ambition and reality of its use, suggesting that AI's potential depends not only on the technology itself but how it is implemented, evaluated, and governed.

Roundtable participants were concerned about the lack of evidence around some of the tools that are being promoted to schools and the need to be alert to the origins of some tools (for example being overly reliant on products and services which could be terminated with little or no notice). Some larger trusts had conducted their own evaluation of products which were not always positive.

Recommendation 1: The Department for Education should continue to evaluate the effectiveness of Edtech (including AI) products and their use through the Edtech Evidence Board project. In addition, the sector should be incentivised to share their own approaches to evaluating the products they are using, with larger trusts well placed to support other schools in the system.

To successfully implement AI, MATs must cultivate expertise amongst all their staff and pupils, not just amongst AI and digital leads. Creating research informed guidance and training will allow trusts to more readily and successfully upskill their current workforce. Embedding training on AI and digital literacy in initial teacher training will ensure that the future workforces of trusts are prepared to navigate the digital era.

Recommendation 2: Create research informed guidance on developing AI and digital literacy for education providers AND for initial teacher training programmes.

The participants at our roundtables were very conscious of the issue of the digital divide and highlighted disparities within their own trusts, both for individual pupils and within academies.

There were, almost inevitably, differences in the experiences of large and small academy trusts. Larger trusts were better placed to have dedicated AI champions and data protection experts who could work across schools in the trust, and they also potentially have the capacity to evaluate the effectiveness of different tools. However, being in a larger trust is not without its own issues. Participants reported that they can often struggle to be on top of all the ways that AI is being used across the hundreds of teachers that they have, particularly when academies can have different approaches to the curriculum.

Recommendation 3: Larger trusts should lead networks of support working with both smaller trusts and individual schools with the Department for Education considering ways that this could be incentivised. The Department for Education and the Department for

Science, Innovation and Technology should work across government to ensure that disadvantaged communities (either through economic circumstances or their location) are not left behind as technology progresses, ensuring access to devices and high-speed reliable internet.

Effective implementation requires careful alignment between AI's technological capabilities and a clear educational trust goal. By adopting a balance between bottom-up innovation driven by teachers and top-down strategic oversight from trust leadership, MATs can make better choices and foster environments that harness AI's benefits while maintaining safety, teacher autonomy, and accountability.

The roundtable discussion highlighted approaches to embedding legal and ethical safeguards, including embedding AI considerations in wider trust policies (i.e. not as a separate consideration). There was a strong awareness of data protection requirements and an understanding of the particular issues that AI creates and the responsibilities placed on MATs. There was some sense that a lot of effort (for example around the necessary data protection impact assessments) was being duplicated across trusts. There were examples of activity to promote AI literacy and safe use, both with teachers, some of the very youngest children, and parents.

Recommendation 4: The Department for Education should consider the merits of providing the key information that trusts and schools will need for completing DPIAs for the more widely used AI products while being mindful of the fact that the process of producing a DPA provides a structured approach for data controllers to consider their individual circumstances.

References

AI in Education. 'Shape of the Future: How System Leaders Can Respond to the Provocations of Artificial Intelligence. | AI In Education'. Accessed 9 January 2026. <https://www.ai-in-education.co.uk/resources/shape-of-the-future-how-system-leaders-can-respond-to-the-provocations-of-artificial-intelligence>.

Altair. 'How AI Can Transform Education: Practical Insights for Multi Academy Trusts (MATs)'. Altair, January 2025. <https://altairltd.co.uk/2025/01/31/how-ai-can-transform-education-practical-insights-for-multi-academy-trusts-mats/>.

Baxter, Dawn. 'Teachers Using ChatGPT – alongside a Guide to Support Them to Use It Effectively – Can Cut Lesson Planning Time by over 30 per Cent'. EEF, 12 December 2024. <https://educationendowmentfoundation.org.uk/news/teachers-using-chatgpt-alongside-a-guide-to-support-them-to-use-it-effectively-can-cut-lesson-planning-time-by-over-30-per-cent>.

Bessemer, Sophie. 'AI In Education: What's Really Happening in UK Schools In 2025'. Third Space Learning, 22 May 2025. <https://thirdspacelearning.com/blog/ai-in-education/>.

Chartered College of Teaching. Edtech Evidence Board Project. n.d. Accessed 9 January 2026. <https://chartered.college/edtech-evidence-board-project/>.

Chiu, Thomas K.F., Moorhouse, Benjamin Luke, Chai, Ching Sing, and Murod and Ismailov. 'Teacher Support and Student Motivation to Learn with Artificial Intelligence (AI) Based Chatbot'. *Interactive Learning Environments* 32, no. 7 (2024): 3240–56. <https://doi.org/10.1080/10494820.2023.2172044>.

Department for Education. AI in Schools and Colleges: What You Need to Know – The Education Hub. 10 June 2025. <https://educationhub.blog.gov.uk/2025/06/artificial-intelligence-in-schools-everything-you-need-to-know/>.

Department for Education. 'Data Protection in Schools - Data Protection Policies and Procedures - Guidance - GOV.UK'. Accessed 9 January 2026. <https://www.gov.uk/guidance/data-protection-in-schools/data-protection-policies-and-procedures>.

Department for Education. 'Education Secretary Outlines Plans to Modernise Education Sector'. GOV.UK, 24 January 2025. <https://www.gov.uk/government/news/education-secretary-outlines-plans-to-modernise-education-sector>.

Department for Education. 'Teachers to Get More Trustworthy AI Tech, Helping Them Mark Homework and Save Time'. GOV.UK. Accessed 9 January 2026. <https://www.gov.uk/government/news/teachers-to-get-more-trustworthy-ai-tech-as-generative-tools-learn-from-new-bank-of-lesson-plans-and-curriculums-helping-them-mark-homework-and-save>.

Department for Education. The Safe and Effective Use of AI in Education - Leadership Toolkit Video Transcripts. 2025.

Dieker, Lisa A., Rebecca Hines, Ilene Wilkins, et al. 'Using an Artificial Intelligence (AI) Agent to Support Teacher Instruction and Student Learning'. *Journal of Special Education Preparation* 4, no. 2 (2024): 78–88.

Fletcher-Wood, Harry. 'How to Improve Behaviour and Wellbeing, and How You're Using AI in Schools'. Teacher Tapp, 28 November 2023. <https://teachertapp.com/uk/articles/how-to-improve-behaviour-wellbeing-and-how-youre-using-ai-in-schools/>.

Generative Artificial Intelligence (AI) in Education. Department for Education, 2025. <https://www.gov.uk/government/publications/generative-artificial-intelligence-in-education>.

Keer, Matt. 'The Risks and Benefits of Using Artificial Intelligence to Power EHCPs'. Accessed 9 January 2026. <https://www.specialneedsjungle.com/risks-benefits-artificial-intelligence-power-ehcps/>.

Latham, Kevin, and Rebecca Montacute. Artificial Advantage? AI in the Classroom and the Inequality Gap. The Sutton Trust, 2025.

Ling, Rosemary. Use Cases for Generative AI in Education: User Research Report. n.d.

McManus, Sean. 'Why Firms Are Merging HR and IT Departments'. BBC News, 7 August 2025. <https://www.bbc.co.uk/news/articles/cy0w8gvq84xo>.

National Education Association. Report of the NEA Task Force on Artificial Intelligence in Education. National Education Association, n.d. Accessed 14 October 2025. <https://www.nea.org/resource-library/artificial-intelligence-education>.

Ofsted. 'The Biggest Risk Is Doing Nothing': Insights from Early Adopters of Artificial Intelligence in Schools and Further Education Colleges. 27 June 2025. <https://www.gov.uk/government/publications/ai-in-schools-and-further-education-findings-from-early-adopters/the-biggest-risk-is-doing-nothing-insights-from-early-adopters-of-artificial-intelligence-in-schools-and-further-education-colleges>.

Ofsted. "The Biggest Risk Is Doing Nothing": Insights from Early Adopters of Artificial Intelligence in Schools and Further Education Colleges'. GOV.UK, 2025. <https://www.gov.uk/government/publications/ai-in-schools-and-further-education-findings-from-early-adopters/the-biggest-risk-is-doing-nothing-insights-from-early-adopters-of-artificial-intelligence-in-schools-and-further-education-colleges>.

Roy, Palak, Ruth Staunton, and Helen Poet. ChatGPT in Lesson Preparation - A Teacher Choices Trial. Evaluation Report. Education Endowment Foundation, 2024. <https://www.isRCTN.com/ISRCTN13420346>.

Samson, Renate, and Krukae Pothong. A Learning Curve? Ada Lovelace Institute, 2025. <https://www.adalovelaceinstitute.org/report/a-learning-curve/>.

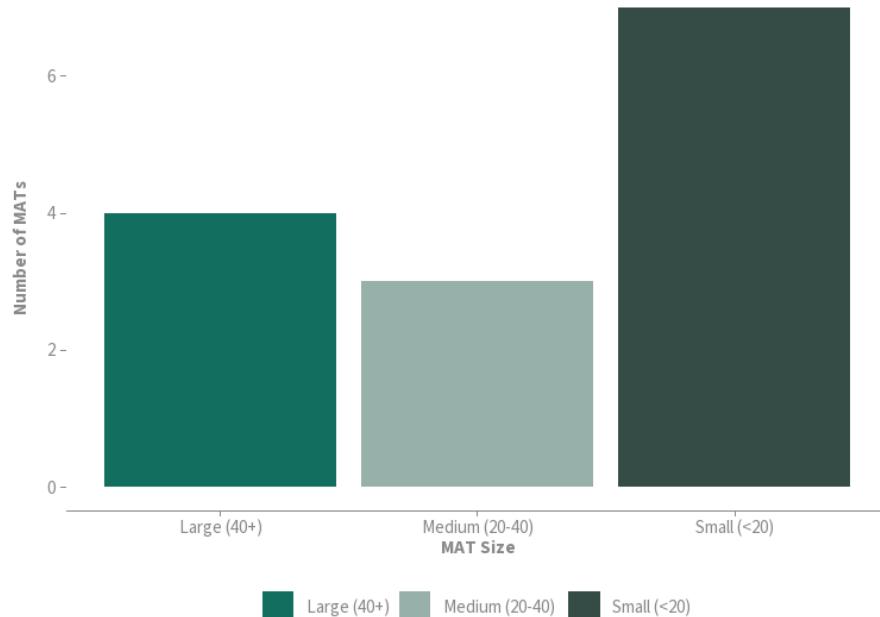
Shape of the Future: How System Leaders Can Respond to the Provocations of Artificial Intelligence. 2024. <https://www.woodlandacademytrust.co.uk/assets/Documents/Attachments/MAT-AI-Report-Sept-24.pdf>.

Annex

Annex A: Roundtable discussion questions

RT 1: How are MATs harnessing the opportunities and approaching the challenges of AI?

- What types of AI / EdTech are currently being used in MATs?
- What educational or administrative goals is the use of AI helping reach? This includes but is not limited to improving:
 - Pupil learning outcomes
 - Experiences of pupils with special educational needs and disabilities
 - Teacher workload
 - School and trust administration
- What strategies are used to foster and promote positive engagement with AI across MATs?
- What is the role of central leadership in shaping MAT's approaches to AI?
- Should MATs prioritize short-term iterative improvements or invest in a long-term strategic vision when developing AI policy guidelines?
- What are the benefits and challenges of each approach?
- How is expertise around AI developed and shared across MATs and the education sector?
- How can AI literacy and the professional development of staff be best developed?


RT 2: How are MATs developing their approach to AI strategy, governance and efficacy measurement?

- What does the successful use of AI in MATs look like? What outcomes should be measured (i.e. pupil attainment, pupil engagement, teacher workload)?
- How are MATs evaluating the effectiveness of the use of AI? What measures and mechanisms are used to track impact?
- What are the decision-making processes MATs use to determine their AI strategy?
- Who is involved in making decisions about AI adoption and use? How are responsibilities distributed or delegated across MATs?
- How are legal and ethical considerations managed in MATs (i.e. data privacy, safeguarding)?
- What stakeholders are involved in supporting schools to make safe and effective decisions on AI? How are responsibilities delegated to external stakeholders?

Annex B: Roundtable participants

Roundtables consisted primarily of multi-academy trust leaders and digital leads as well as other relevant stakeholders and experts on AI in education. A total of 14 multi-academy trusts participated across the two roundtables, representing 442 schools from across England. Trusts differed by size as seen below in Figure 1.

Figure 1: Multi-academy trust roundtable participants by size (number of academies in the MAT)

There was a roughly equal number of representatives from smaller (<20 schools) trusts and medium and large trusts (20+ schools).

By phase, trusts represented an equal number of primary and secondary schools, as well as a small subset of other establishments such as all-through schools, special schools, alternative provision, or 16-plus institutions.

Figure 2: Multi-academy trust roundtable participants by school phase representation

Primary	204
Secondary	197
Other	34

7 other representatives from key organisations were also present, including governmental bodies, charities, AI providers, and other professional educational bodies.