

Youth degree apprenticeships

An alternative to university?

Robbie Cruikshanks, Whitney Crenna-Jennings, David Robinson November 2025

About the Education Policy Institute

The Education Policy Institute is an independent, impartial, and evidence-based research institute that promotes high quality education outcomes, regardless of social background. We achieve this through data-led analysis, innovative research and high-profile events.

Acknowledgements

This report has been kindly funded by AL Elevation. www.ALElevation.org

This publication includes analysis of the National Pupil Database (NPD). The Department for Education is responsible for the collation and management of the NPD and is the Data Controller of NPD data. Any inferences or conclusions derived from the NPD in this publication are the responsibility of the Education Policy Institute and not the Department for Education. This work contains statistical data from ONS which is Crown Copyright. The use of the ONS statistical data in this work does not imply the endorsement of the ONS in relation to the interpretation or analysis of the statistical data. This work uses research datasets which may not exactly reproduce National Statistics aggregates. The analysis was carried out in the Secure Research Service, part of the Office for National Statistics.

About the authors

Robbie Cruikshanks is a Senior Researcher for Higher Education at the Education Policy Institute. He holds an MEng in Computer Science and Philosophy from the University of York. At EPI, he has led on research analysing the inclusion performance of multi-academy trusts, and the effect of falling pupil rolls on school funding.

Whitney Crenna-Jennings is the Associate Director for Mental Health, Wellbeing and Inclusion. Prior to joining EPI in 2017, she was involved with several research projects focused on health inequalities and social determinants of health at University College London, Public Health England and FPA UK. At EPI, she has led on research exploring access to child and adolescent mental health services, drivers of young people's wellbeing and mental health, and the exclusion of vulnerable learners from the education system.

David Robinson is the Director for Post 16 and Skills at the Education Policy Institute. David's background includes 6 years at the Department for Education, as the lead analyst first on school accountability and then on capital funding. David led on the analysis and research that informed the reforms to school accountability in Primary schools, Secondary schools and 16-19 settings; most notably the development of the Progress 8 measure. He also led the economic analysis of the department's capital funding proposals during the 2015 Comprehensive Spending Review.

Contents

Contents	3
Executive summary	
Introduction	
Access and participation	12
Who completes degree apprenticeships?	21
Degree apprentices' earnings – exploratory analysis	32
Employer interviews	37
Conclusion and recommendations	45
Appendix A: Model results	48
Appendix B: Data sources	50

Executive summary

Introduced in 2015, degree apprenticeships combine university-level study with paid, work-based training, leading to a full degree qualification. Designed to address skills shortages and widen participation in higher education, they offer an alternative route to a degree without incurring tuition fee debt.

This report examines access, participation, and outcomes for young people aged 18–24 on level 6 degree apprenticeship courses in England. Using linked administrative data, we provide evidence on who is taking up these courses, how successful students are in completing them, and some exploratory analysis of their early labour market outcomes.

We also conducted a series of case studies with a range of firms to uncover the employer perspective on the challenges, barriers, and successes of degree apprenticeships in the workplace.

Overall, we find that degree apprenticeships have delivered high achievement rates and encouraging early signs of strong labour market returns over the past decade. Despite this, widening participation must be a priority given that degree apprenticeships appear to be less inclusive with regard to socio-economic disadvantage than even Russell Group universities.

Participation

Using the latest available data on apprenticeships, we analysed the changing demographics of young (18-24 years old) level 6 degree apprenticeships in terms of age, socio-economic disadvantage, and prior attainment. The following are the key findings from this analysis:

- Since their introduction in 2015, there has been significant growth in the number of young people starting degree apprenticeships. This has been largely driven by those aged 19-24, who made up 70 per cent of the youth cohort in 2022/23. Level 6 undergraduates¹, on the other hand, are largely 18 years or younger, making up 61.3 per cent of their youth cohort in 2022/23.
- In 2023/24, the most popular sectors for young degree apprentices were the Health (27.5 per cent), Construction (22.3 per cent), and Digital Technology (16.9 per cent) sectors. A large volume of starts are also seen in the Business, Administration, and Law (15.0 per cent) and Engineering and Manufacturing Technology (14.8 per cent) sectors.
- In 2023/24, London remains the plurality provider of degree apprenticeship starts for young degree apprentices (19.1 per cent), followed closely by the North West (15.1 per cent). Take up of degree apprenticeships remains very low in the North East, which had just 3.0 per cent of young degree apprenticeship starts in 2023/24.

4

¹ Only includes those taking their first degree.

- Young degree apprentices (18-24) are much less likely to be disadvantaged² than both similar-aged Russell Group undergraduates and the wider undergraduate cohort. In 2022/23, 10.7 per cent of degree apprentices were identified as disadvantaged, compared with 11.4 per cent of Russell Group undergraduates, 19.4 per cent of all undergraduates, and 27.4 per cent of all students who finished 16-19 study in 2022/23.
- GCSE attainment among degree apprentices is relatively high; 18-year-old apprentices in 2022/23 had an average English and maths points score of 6.4 compared to 6.1 among all undergraduates and 7.2 for Russell Group undergraduates. The GCSE prior attainment for disadvantaged students is similar to that of non-disadvantaged students.

Outcomes and earnings

To further understand the factors most associated with the completion of a degree apprenticeship³, we constructed a set of statistical models for the latest year of completion data available, 2023/24. Additionally, we conducted exploratory analysis on the average earnings of degree apprentices one year after completion, comparing them to those of university graduates.

- Achievement rates are higher amongst degree apprenticeships compared to lower level apprenticeships. Degree apprenticeship achievement rates were 71.0 per cent for 16-18 year olds and, 63.8 per cent for 19-23 year olds in 2023/24. Achievement rates are also similar between students from the most and least deprived areas of England.
- Degree apprentices in the digital sector have significantly higher odds of completing their apprenticeship⁴, even after accounting for the apprentices' backgrounds and prior attainment. Those in construction, engineering, and retail have lower odds of completion.
- Apprenticeships in the North West, South West, and Midlands have higher odds of completion than those in London.
- Apprentices from several minority ethnic backgrounds including Black African, Pakistani, Bangladeshi, Indian, and those of mixed or other backgrounds - all show lower odds of completing their apprenticeship compared with White British apprentices, after controlling for other characteristics.
- Female apprentices have slightly higher odds of completing their degree apprenticeship than male apprentices. However, disadvantage is not a significant predictor of completion once factors such as prior attainment and apprenticeship sectors are controlled for.
- Longer term earnings data is required to fully understand the benefits of degree apprenticeships. However, our exploratory analysis based on the latest two years of

² 'Disadvantaged' refers to those identified as eligible for free school meals at any point in the six years including and prior to the end of secondary school.

³ 'Completion' refers to all apprentices who completed the learning aims, including the end point assessment of their course. 'Achievement' refers to a subset of completing apprentices, those who also achieved a degree qualification.

⁴ When compared to our reference category: Business, Administration, and Law.

available data⁵ shows that one year after graduation, the average young degree apprentice earned around double that of the average young graduate (£36,785 vs £18,555 in 2020-21). Average young degree apprentice salary one year after completion remains larger than even degree-holders who graduated 10 years ago⁶.

Employer perspectives

To supplement findings from our data analyses, we interviewed four employers, two large energy infrastructure providers, one which offers degree apprenticeships and one which currently does not, and two smaller firms in the construction and media sectors respectively. The following are the key themes that emerged from these interviews:

- Employers largely see the degree apprenticeship programme as beneficial to them, but larger employers anticipate these benefits accruing over a longer period, whilst the smaller employers experienced these benefits within months. Employers also see local recruitment and higher retention rates as key strengths of the programme.
- As most degree apprentices join organisations with less time in education than university graduates, they often need more support than anticipated. Employers described a steep learning curve in implementing the programme, requiring significant investment in structured support, mentoring and training.
- Employers highlighted challenges with both provider quality and the rigidity of apprenticeship standards. They pointed to significant variation in provider quality, limited provider accountability, and the inflexibility of standards which prevent apprentices from switching programmes if their chosen pathway proves unsuitable.

Recommendations

Overall, our analysis shows that degree apprenticeships have had a number of key successes since inception: both demand and supply have grown rapidly while achievement rates have remained high. Exploratory analysis of early-career earnings suggests very promising outcomes in the labour market, and employer sentiment towards degree apprenticeships is largely positive.

Despite these successes, we have also identified areas in which degree apprenticeships can be improved to allow the benefits of such courses to further develop, and widen access to these benefits to the most disadvantaged young people in England:

The government has recently taken steps to increase the proportion of disadvantaged young people accessing higher education, for example through the reintroduction of maintenance grants for selected courses. A similar approach should be extended to degree apprenticeships to widen participation. This could be achieved through expanding the

⁵ Includes a subset of degree apprentices who completed their study at least one full financial year before the 2019-20 and 2020-21 financial years.

⁶ Nominal 2020-21 earnings of first-degree graduates 10 years after graduation, via Department for Education, *LEO Graduate and Postgraduate Outcomes*, June 2025. https://explore-education-statistics.service.gov.uk/find-statistics/leo-graduate-and-postgraduate-outcomes/2022-23

eligibility (and when funding permits, the scale of support) of existing direct, ring-fenced top-up funds employers can currently claim through training providers for young apprentices with education, health and care (EHC) plans or those who have been in care⁷. In addition to incentivising employers to recruit from disadvantaged groups, such a mechanism would also enable employers to provide the higher levels of support disadvantaged apprentices often require. While this additional support would come at a cost to the exchequer, the highly selective nature of degree apprenticeships suggests that these young people would likely have otherwise attended university, where prospective costs are higher still.

- To stimulate demand from disadvantaged young people, the government should further expand targeted outreach initiatives. For example, higher education (HE) providers providing off the job-training for degree apprenticeships should be encouraged to promote access to degree apprenticeships, as part of their access and participation plans.
- In order to tackle the low completion rates within some sectors, and among some ethnic minority groups, the government should continue to develop resources and tools to allow the sharing of best practices for employers taking on degree apprentices and their training providers. For example, the Education Endowment Fund or the Youth Futures Foundation could broaden their respective scopes to include what works to support access to, and achievement of, apprenticeships.
- There is a need to continue to build the evidence base on access to, and the benefits of degree apprenticeships. Alongside its graduate outcomes statistics, the DfE should publish average earnings for degree apprentices, at different ages. It should also publish widening participation statistics for degree apprenticeships, showing the proportion of degree apprentices from disadvantaged areas or backgrounds, and how this is changing over time. Furthermore, the DfE must continue to update the employment and earnings data available through the Longitudinal Educational Outcomes (LEO) dataset to allow researchers to further analyse the impact of degree apprenticeships, as well as other education reforms, such as T levels.

7

⁷ GOV.UK, *Get funding for apprenticeship training*. https://www.gov.uk/employing-an-apprentice/get-funding

Introduction

Introduced in 2015, during the final weeks of the coalition government⁸, degree apprenticeships aimed to integrate the academic learning traditionally associated with university degrees with the on-the-job training offered by vocational apprenticeships.

In addition to offering a debt-free pathway to higher education – a particularly attractive selling point at time of introduction, given the raising of the tuition fee cap to £9,000 in 2012/13 – degree apprenticeships allowed students to gain sector-specific skills and work towards a level 6 qualification, all while earning a wage alongside their study.

In addition to the benefits to prospective apprentices, degree apprenticeships were also designed to help address skills shortages and boost productivity⁹, increasing employment and reducing welfare costs.

Beyond the stated aims of government, degree apprenticeships were also identified as a tool for social mobility¹⁰, offering students from areas or families traditionally underserved by university education an alternative, more financially secure pathway to higher level qualifications, and their associated wage premia.

A decade on from their introduction, degree apprenticeships have boomed in popularity, with huge increases in the number of starts, standards, and participating providers. Despite this growth, there is still a lack of information on the economic returns to degree apprenticeships in the way that there is for university degrees. Similarly, the recent growth in provision has not been complemented by evidence on the changing demographics of degree apprentices, their educational outcomes, and what factors are most important in determining how likely a degree apprentice is to achieve their qualification.

In addition to the outcomes for students, it is important to understand the successes and challenges faced by employers of degree apprentices, many of whom are navigating the complexities of supporting their apprentices' learning, providing them with training, and developing them as future employees.

This report aims to provide a comprehensive review of the state of degree apprenticeships today using the latest data available, covering the changing make-up of the degree apprenticeship cohort and their educational and early career labour market outcomes. We have also undertaken

⁸ Department for Business, Innovation & Skills, *Government rolls out flagship Degree Apprenticeships*, March 2015. https://www.gov.uk/government/news/government-rolls-out-flagship-degree-apprenticeships

⁹ Skills England, Assessment of priority skills to 2030, August 2025. https://www.gov.uk/government/publications/assessment-of-priority-skills-to-2030/assessment-of-priority-skills-to-2030

¹⁰ Social Mobility Commission, *Apprenticeships and social mobility: fulfilling potential*, June 2020. https://www.gov.uk/government/publications/apprenticeships-and-social-mobility-fulfilling-potential

qualitative research with employers via a series of in-depth interviews, investigating the challenges and barriers to taking on and supporting degree apprentices.

Throughout this report, we focus on young degree apprentices aged under 25, to allow for comparisons with typical first-degree undergraduates. We break this group down into two categories: 18-year-olds¹¹ (to compare with the typical graduate who attends university the year following finishing their 16-18 study) and 19-24 year olds (to compare with older students who may have taken a year out or worked before returning to study).

¹¹ Our 18 year-old group includes a small number of apprentices who were aged 17 or below at the start of the academic year they began study.

Understanding Level 6 Apprenticeships

A range of apprenticeship programmes are available at level 6, offering a combination of work and training alongside higher level study.

There are three main kinds of level 6 apprenticeships:

- **Integrated degree**: for these apprenticeships, the end-point assessment (EPA) is provided by a university that works with employers to create the course. This means that the EPA must be passed to achieve the degree.
- **Non-integrated degree**: these apprenticeship programmes are existing degrees that are combined with work-based training to meet apprenticeship standards. The apprentices first achieves their degree, before completing an EPA with a non-HE assessment organisation.
- **Non-degree qualification**: these apprenticeships are level 6 courses but do not have a degree attached to the programme.

For the purposes of this report, we will focus on both integrated and non-integrated degree apprenticeships, referring to these together as 'degree apprenticeships', to allow comparability with traditional university degrees. When the term 'level 6 apprenticeships' is used, we refer to all apprenticeships at level 6, including both degree-awarding and non-degree awarding programmes.

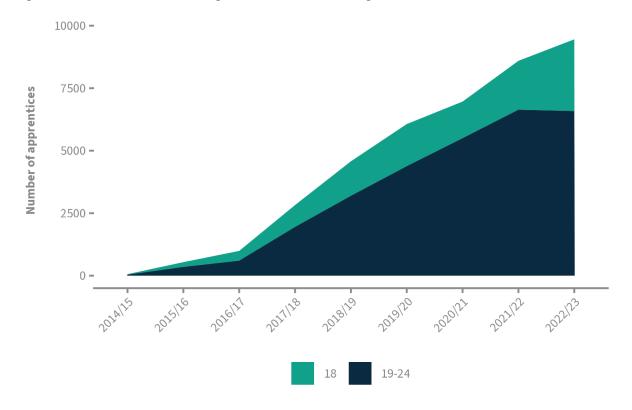
12

⁻

¹² Office for Students, *Checking the Quality of Apprenticeships*. https://www.officeforstudents.org.uk/for-providers/student-choice-and-flexible-learning/degree-apprenticeships/degree-apprenticeships-for-providers/checking-the-quality-of-apprenticeships/

Access and participation

Access and participation


This section examines patterns of youth access to degree apprenticeships across key student characteristics. It considers differences in participation by region, age group, and subject sector, as well as the socio-economic background and prior attainment of students. Together, these measures help to understand who is currently accessing degree apprenticeships and provides important context for interpreting outcomes later in the report. Data sources used to calculate these measures can be found in Appendix B.

Starts on degree apprenticeships

Following two years of slow growth, starts on degree apprenticeships rose rapidly from 2017/18, and continued at a similar pace over the next five years.

Figure 1.1 shows these starts, split by youth age group. 19-24 year olds have been the main driver behind the growth in starts, now making up 70.0 per cent of youth apprenticeship starts in 2022/23. This is in contrast to first-degree undergraduates (figure 1.2), where age composition of cohorts has long been dominated by 18 year old students, making up 61.3 per cent of university starts in 2022/23.

Figure 1.1: Number of starts on degree apprenticeships by age, 2014/15-2022/23

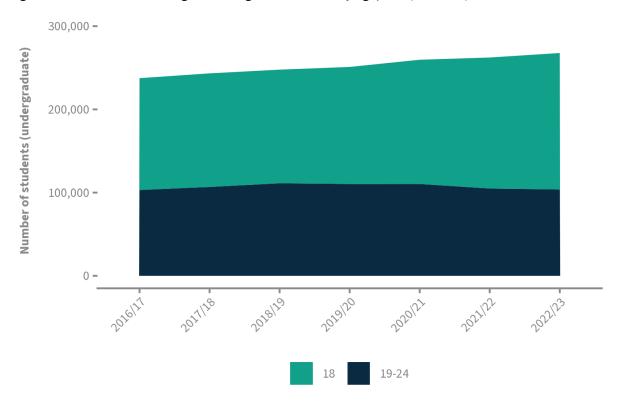


Figure 1.2: Number of first degree undergraduate starts by age, 2016/17-2022/23

Where and what do degree apprentices study?

The growth in starts in recent years has not been distributed across the regions of England equally. Figure 1.3 shows the number and percentage share of total starts in the latest academic year, 2023/24, as well as the percentage change in this share since 2018/19 for each youth age group. Numbers of starts have been rounded to the nearest five.

London remains the dominant provider of degree apprenticeship starts for both age groups, but rising starts in the North West and South West have seen London's share of total starts fall slightly.

Figure 1.3: Starts on degree apprenticeships by region, 2023/24

		18			19-24	
Region	2023/24	2023/24 %	% change	2023/24	2023/24 %	% change
	starts	share	from 2018/19	starts	share	from 2018/19
East Midlands	240	7.41	+2.86	390	5.63	-1.56
East of England	295	9.10	+2.29	660	9.53	+2.34
London	610	18.83	-2.28	1335	19.28	-1.03
North East	80	2.47	-0.78	255	3.68	-2.81
North West	485	14.97	+0.36	1045	15.10	+0.84
South East	385	11.88	-0.45	960	13.86	+1.31
South West	445	13.73	+6.59	610	8.81	+1.62
West Midlands	480	14.81	-2.72	865	12.49	-1.33
Yorkshire and The Humber	220	6.79	-5.87	805	11.62	+0.62

As with the regions of England, there has not been uniform growth across apprenticeships sectors. Figure 1.4 again shows the number and percentage share of total starts in 2023/24 and change since 2018/19 by age group.

In 2018/19, youth degree apprenticeships were dominated by Digital Technology, Business, and Construction – courses in these fields were among the first offered at the launch of degree apprenticeships in 2015 and have had considerable industry support since the inception of the pathway. In 2023/24, these courses remain popular, but there has been a surge of starts in healthcare courses largely driven by the approval of the nursing degree apprenticeship standard in 2017.

Figure 1.4: Starts on degree apprenticeships by subject area, 2023/24

			<u> </u>			
		18			19-24	
Sector	2023/24	2023/24	% change	2023/24	2023/24	% change
Sector	starts	% share	from	starts	% share	from
			2018/19			2018/19
Health, Public Services and Care	520	15.71	+13.80	2430	32.75	+22.55
Construction, Planning and the Built	640	19.34	-5.51	1750	23.58	-8.99
Environment	720	21.75	0.10	1000	14.00	F 00
Digital Technology	720	21.75	-8.18	1090	14.69	-5.99
Business, Administration and Law	560	16.92	-2.83	1050	14.15	-4.55
Engineering and	700	21.15	-1.78	890	11.99	-4.72
Manufacturing Technologies						
Retail and Commercial Enterprise	60	1.81	+1.81	90	1.12	+0.93
Agriculture, Horticulture and Animal Care	40	1.21	+1.21	50	0.67	+0.67

Science and	20	0.60	-0.03	30	0.40	-0.45
Mathematics						
Arts, Media and	10	0.30	+0.30	20	0.27	+0.27
Publishing						
Social Sciences	40	1.21	+1.21	20	0.27	+0.27

Comparing the socio-economic status of degree apprentices

Apprenticeships are often considered a valuable social mobility lever in the education system, allowing individuals to gain skills outside of traditional academic settings where attainment gaps between socio-economic backgrounds remain prevalent. Here we consider whether degree apprenticeships are delivering on this promise. We consider how the proportion of disadvantaged young people accessing degree apprenticeships has changed, and how this compares with access to traditional undergraduate degrees, including those in the more selective Russell Group of universities. Throughout this report, 'disadvantaged' refers to students who were eligible for free school meals at any point in the preceding six school years in their final year of key stage 4 study¹³. Students whose educational records could not be linked with census results are not included in these results¹⁴.

Figure 1.5 shows the proportion of disadvantaged students by entry year. For younger (<19 years old) apprentices, 7.8 per cent were classified as disadvantaged in 2022/23, compared to 10.7 per cent of Russell Group undergraduates and 16.3 per cent of all undergraduates. Older apprentices (19-24 years old) are a more disadvantaged group overall, with the degree apprentice cohort (11.9 per cent) less disadvantaged the Russell Group intake (13.1 per cent) and considerably less disadvantaged than the wider undergraduate cohort (24.0 per cent) in 2022/23.

¹³ This definition of disadvantage, referred to in DfE statistics as 'FSM6', represents 25.0 per cent of students in state-funded schools England who finished key stage 4 in 2022/23. See our Annual Report for more information on this method of defining disadvantage (https://epi.org.uk/annual-report-2025/).

¹⁴ This moons that students who finished key stage 4 study in independent schools have not been

¹⁴ This means that students who finished key stage 4 study in independent schools have not been included in this analysis.

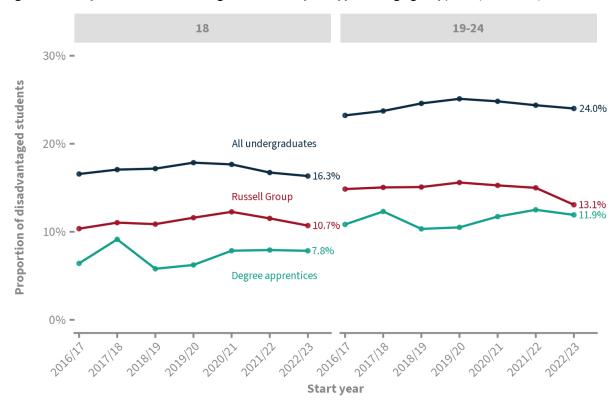


Figure 1.5: Proportion of disadvantaged students by HE type and age group, 2016/17 - 2022/23

The prior attainment of degree apprentices

As higher-level qualifications, degree apprenticeships require students to have achieved a certain level of qualification on entry. These requirements are often similar to those of undergraduate degrees.

Figure 1.6 shows the average GCSE English and Maths scores for degree apprentices, Russell Group undergraduates and the wider undergraduate cohort¹⁵.

Both younger and older apprentices have consistently had higher average attainment at GCSE than the undergraduate cohort (where entry requirements have a wide variation across provider and course type), but remain around one grade lower than the prior attainment of undergraduates at Russell Group universities, which tend to be highly selective.

⁻

¹⁵ Students who sat GCSEs in 2020 and 2021 saw an increase in the average grade due to the effect of teacher-assessed and centre-assessed grades in these years. This may account for some of the increase in average grade in the latest years of our 18 year-old age group.

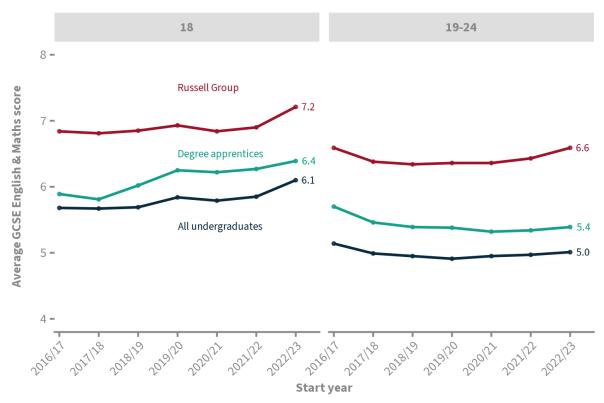


Figure 1.7 shows a similar breakdown, instead considering average points score (where 10 points is equivalent to one A level grade) across all qualification entries at the end of key stage 5 study. Here, degree apprentice attainment is much more similar to that of the wider undergraduate cohort, while the attainment of Russell Group undergraduates tends to lead by around one and a half A level grades.

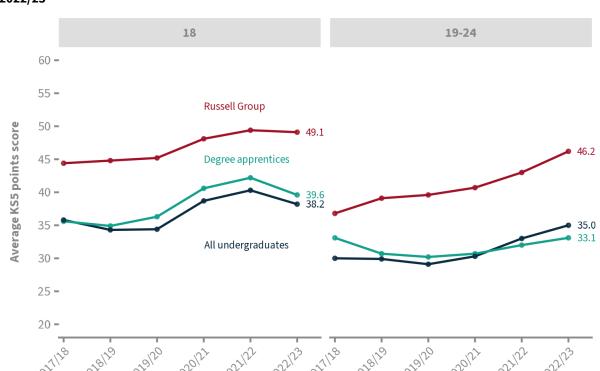
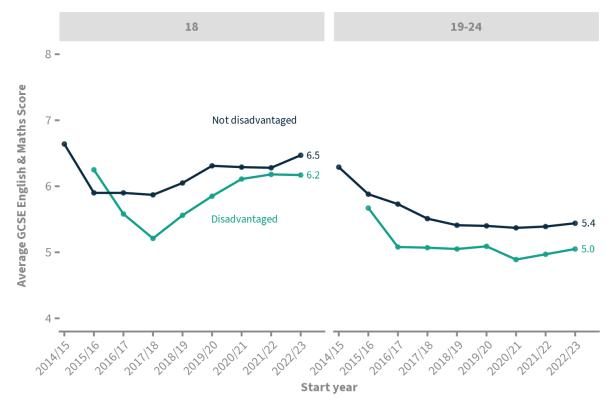


Figure 1.7: Average points score per KS5 entry of degree apprentices vs undergraduates, 2017/18 – 2022/23

Disadvantage and attainment

Our previous research on attainment gaps has shown a consistent disadvantage gap in GCSE attainment, with disadvantaged students on average around 19 months of learning behind their non-disadvantaged peers in GCSE English and maths.¹⁶

To investigate if these gaps persist among degree apprenticeship cohorts, we have compared the average GCSE English and maths attainment of apprentices identified as disadvantaged at the end of secondary school with that of their non-disadvantaged peers. Figure 1.8 shows this data for each age group.


Among younger (<19 years old) apprentices, the gap in average attainment between disadvantaged and non-disadvantaged apprentices has narrowed over the past decade, with disadvantaged apprentices achieving just 0.16 grades lower than their non-disadvantaged peers in 2022/23.

For older (19-24) apprentices – a lower attaining group on average – there has not been a similar narrowing, with disadvantaged apprentices achieving 0.41 grades lower on average than their non-disadvantaged peers.

_

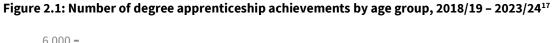
¹⁶ See our Annual Report for more on the disadvantage gap: https://epi.org.uk/annual-report-2025/

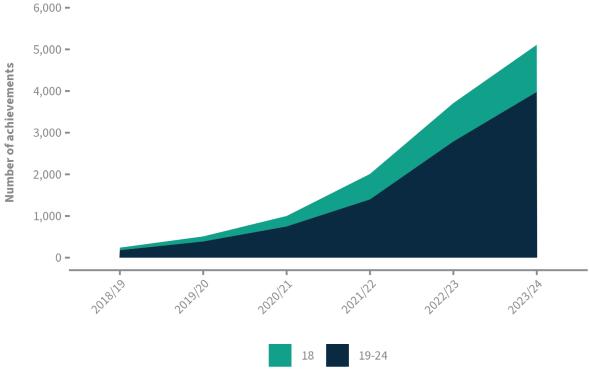
Figure 1.8: Average GCSE English and maths score of degree apprentices by disadvantage status and age group, 2014/15 - 2022/23

The relative parity in prior attainment between disadvantaged and non-disadvantaged students, alongside relatively low levels of disadvantage across degree apprenticeship cohorts indicates that disadvantaged degree apprentices are a high-attaining subset of the wider disadvantaged population.

Neither of these trends are particularly surprising given that degree apprenticeships are a higher-level qualification and still developing as a pathway. However, these findings suggest that degree apprenticeships may not have substantially broadened access to level 6 qualifications for disadvantaged young people. Instead, they are more likely to be taken by non-disadvantaged individuals (in comparison to undergraduate degrees) and given that disadvantaged degree apprentices typically have levels of prior attainment similar to their non-disadvantaged peers, many of these students would likely have been qualified to progress into university through an undergraduate degree.

Who completes degree apprenticeships?


Who completes degree apprenticeships?

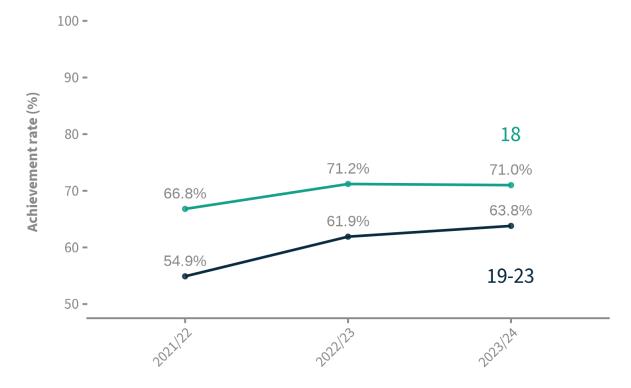

This section explores the outcomes of youth degree apprenticeships, focusing on how completion and achievement vary across student and course characteristics.

How many apprentices achieve a degree?

As observed with the large increases in starts in the previous section, there has been a corresponding growth in the number of degree apprentices completing their course and achieving a degree qualification.

Figure 2.1 shows the number of achievements in each academic year, split by age group. Corresponding with starts, growth in achievements has been dominated by the older (19-24) age group.

¹⁷ Department for Education, *Apprenticeships – Academic Year 2023/24*. https://explore-education-statistics.service.gov.uk/find-statistics/apprenticeships/2024-25


What is the achievement rate for level 6 apprenticeships?

The Department for Education (DfE) collects data on national achievement rates for all apprenticeships levels, measuring the proportion of apprentices that successfully completed their training and assessment.

Figure 2.2 shows the achievement rate in England for level 6 apprenticeships (including the minority of non-degree qualifications) over the past three years, split by age group¹⁸.

Level 6 apprenticeships have the highest achievement rate of all apprenticeship levels, well above the national rate for all apprenticeships of 60.5 per cent in 2023/24. As with the rate for all apprenticeships, the level 6 achievement rate has increased in the past three years. For younger (16-18) apprentices, this rate has begun to stall in 2023/24 but remains high at 71.0 per cent.

Figure 2.2: Achievement rate for level 6 apprenticeships by age group, 2021/22-2023/2419

¹⁸ Note that these age groupings used by the DfE do not include 24 year olds, unlike the breakdowns in the previous section.

¹⁹ Department for Education, *Apprenticeships – Academic Year 2023/24*. https://explore-education-statistics.service.gov.uk/find-statistics/apprenticeships/2024-25

The data collected by the DfE is also broken down by socio-economic background. Unlike the analysis in the previous section, which categorised individuals by free school meal eligibility at the end of secondary school, this data uses Index of Multiple Deprivation (IMD) quintiles, an areabased measure of relative deprivation in England.

Figure 2.3 shows the achievement rate for level 6 apprenticeships over the past three years, split by age group and IMD quintile. The red line represents quintile one (those from the most deprived fifth of areas), while the green line represents quintile five (those from the least deprived fifth of areas).

For both age groups, achievement rates are broadly similar across deprivation levels. For younger (18 years old) apprenticeships, achievement rate for the most deprived students has now dipped slightly below that of the least deprived in 2023/24, despite outperforming the least deprived in 2021/22.

For older (19-23 years old) apprentices, achievement rates for the most deprived students has been slightly behind rates for the least deprived students since 2021/22, but the gap has almost entirely narrowed in 2023/24.

Figure 2.3: Achievement rate for level 6 apprenticeships by age group, IMD quintile, 2021/22 – 2023/24²⁰

-

²⁰ Department for Education, *Apprenticeships – Academic Year 2023/24*. https://explore-education-statistics.service.gov.uk/find-statistics/apprenticeships/2024-25

Figure 2.4 shows the achievement rate (the proportion that successfully completed their training and assessment), as well as the pass rate (the proportion that achieve their apprenticeship, of those who completed) for level 6 apprenticeships of all ages by sector²¹.

Despite high pass rates on average, there is a wide range of achievement rates across sectors. In all sectors but Construction, Planning, and the Built Environment – where under one third of apprentices reach course achievement - the majority of apprentices complete their study.

Across nearly all sectors, pass rates among those who completed the course for level 6 apprenticeships are very high, typically above 99 per cent, indicating that most apprentices who reach their end-point assessment go on to successfully achieve their qualification. The exception is Construction, Planning, and the Built Environment, where the pass rate is notably lower at 82 per cent.

However, achievement rates among those who started the course vary considerably by sector, ranging from just 33 per cent in Construction, Planning, and the Built Environment to over 96 per cent in Social Sciences. This suggests that while apprentices who complete their training tend to pass, many do not reach that stage, particularly in sectors such as construction, retail, and business.

Research from the National Open College Network (NOCN) and the British Association of Construction Heads (BACH)²² highlights several factors that may contribute to construction's lower overall achievement rate, including the high proportion of small and micro-employers in the sector, project-based employment patterns, and apprentices leaving programmes early due to changing work opportunities or redundancy. The sector also faces logistical challenges in ensuring consistent on-the-job training and assessment opportunities across dispersed sites, which can make it harder for apprentices to complete all required elements of their programme.

²¹ The Agriculture, Horticulture and Animal Care sector has been excluded due to low numbers of apprentices.

²² Graham Hasting-Evans and Helen Shorter, *Construction Apprenticeship Achievement rates crisis: Good practice Solutions*, NOCN and BACH, September 2024. https://www.nocn.org.uk/data/News_Downloads/ConstructionAchievementRates.pdf

Figure 2.4: Pass and achievement rates for all level 6 apprentices, 2023/24²³

Sector	Pass rate (%)	Achievement rate (%)
Social Sciences	100	96.4
Education and Training	99.3	85.7
Health, Public Services and Care	99.6	79.8
Digital Technology	99.7	72.7
Science and Mathematics	100	71.9
Engineering and Manufacturing Technologies	99.0	64.5
Business, Administration and Law	99.2	57.1
Retail and Commercial Enterprise	100	51.3
Construction, Planning and the Built Environment	82.3	32.6

What factors are associated with completion of degree apprenticeships?

With such variation in likelihood of achievement, we have used the latest available year of completion data (2023/24) to investigate the factors most associated with completion of a degree apprenticeship.

Completion differs slightly from achievement: while the vast majority of apprentices who complete their course also reach achievement, our measure of completion also includes those with partial achievement (i.e., achieving an award at a lower academic level than their original course aim), and those who at time of data collection had completed their learning but had not yet received results.

We used a logistic regression model to identify which factors are most strongly associated with whether an apprentice completes their degree apprenticeship.

The results are presented as odds ratios²⁴, which show how the odds of completing an apprenticeship changes depending on a student's characteristics - such as their region, sector, gender, ethnicity, and prior attainment - after accounting for all other factors in the model.

An odds ratio above 1 means the group has higher odds of completing the apprenticeship compared to the reference group, while an odds ratio below 1 means they have lower odds of completing their apprenticeship.

For example, if females have an odds ratio of 1.3 relative to males, this indicates that, holding other characteristics constant, the odds of completing their apprenticeship are about 30 per cent higher for females. This does not mean that 30 per cent more females complete their apprenticeships, but rather that completion is somewhat more likely when comparing the two groups on a relative basis.

²³ Department for Education, *Apprenticeships – Academic Year 2023/24*. https://explore-education-statistics.service.gov.uk/find-statistics/apprenticeships/2024-25

²⁴ Odds ratios measure relative chances ('odds') in relation to a reference category, rather than absolute probabilities.

Model specification and methodology

We fit a binary logistic regression model with apprenticeship completion (1 = completed, 0 = did not complete) as the dependent variable. The model included the following predictor variables:

- Region
- Apprenticeship sector
- Gender
- Ethnicity
- Prior attainment (GCSE English and maths average score and key stage 5 average point score per entry)
- Disadvantaged status at the end of secondary school (FSM6 indicator)
- Level 3 qualification route (academic or vocational)
- Degree-awarding status of the course

Individuals missing data on any of these variables and any categories with fewer than ten individuals were excluded. Variance inflation factors (VIFs) were calculated to test for multicollinearity, and all predictors had VIF < 5. Sensitivity tests were undertaken using alternative reference categories, reduced models, and a series of models using interaction terms to test for moderating effects. Results across these tests were substantively similar, suggesting that the main conclusions are robust to alternative model formulations.

The coefficients were exponentiated to produce odds ratios. For continuous predictors such as prior attainment, the odds ratio represents the change in odds of completion associated with a one-unit increase in the variable (e.g. a one-point increase in average GCSE grade).

Reference groups for each variable are as follows:

Variable	Reference group
Region	London
Sector	Business, Administration and Law
Gender	Male
Degree status	Degree apprenticeship
Level 3 qualification route	Academic qualification
Disadvantage status	Non-disadvantaged
Ethnicity	White British

Full model output, including odds ratios, standard errors, confidence intervals, and observations can be found in Appendix A.

Figure 2.5 shows the statistically significant predictors at a significance level of 0.05. Each dot represents the odds ratio estimate, with the bars either side representing 95 per cent confidence intervals. Odds ratios have been presented on a log scale to allow for comparison of effect sizes. Some results have been excluded from this figure for clarity; full results can be found in Appendix A.

We observe that sector, region, and ethnicity appear to be the factors most associated with completion. Apprentices in the East Midlands, North West, South West, and South East all show significantly higher odds of completion compared to those in London, with odds ratios generally in the range of 1.5–3.0. This suggests that regional variation plays an important role in completion likelihood. Apprentices in Digital Technology, Science and Mathematics, and Education and Teaching have higher odds of completion relative to those in Business, Administration and Law. Those in Construction and Retail and Commercial Enterprise have significantly lower odds. The fact that these sectors retain low completion rates in our models suggests that there are factors other than the characteristics of the apprentices that is driving the low completion rates seen in Figure 2.4.

There are also statistically significant differences in completion by ethnic group. Apprentices from several minority ethnic backgrounds - including Black African, Pakistani, Bangladeshi, Indian, and those of mixed or other backgrounds - all show lower odds of completing their apprenticeship compared with White British apprentices, after controlling for other characteristics. These results reflect qualitative findings from research conducted by the Youth Futures Foundation and NatCen²⁵ that found several key barriers to participation and completion for minority ethnic young people in apprenticeships, such as lack of awareness around apprenticeships among minority ethnic communities, ongoing financial barriers, and experiences of discrimination and racism.

We also found other small but significant effects. Female apprentices had slightly higher odds to complete their course than male apprentices, while those with a non-academic level 3 qualification (compared to those with an academic qualification) had slightly lower odds to complete.

Disadvantage status at the end of secondary school was not found to be a statistically significant predictor of completion. As mentioned in the previous section, one explanation for this is that disadvantaged students who enter degree apprenticeships are a high-attaining subset of the wider disadvantaged population, meaning their risk of non-completion is already lower than the group average. In other words, disadvantage appears to matter in terms of access to, rather than completion of, degree apprenticeships.

²⁵ Helena Takala et. al., *Ethnic disparities and apprenticeship participation*, Youth Futures Foundation and NatCen, April 2025. https://youthfuturesfoundation.org/wp-content/uploads/2025/03/Ethnic-disparities-and-apprenticeships_Research-report_NatCen_Apr25.pdf

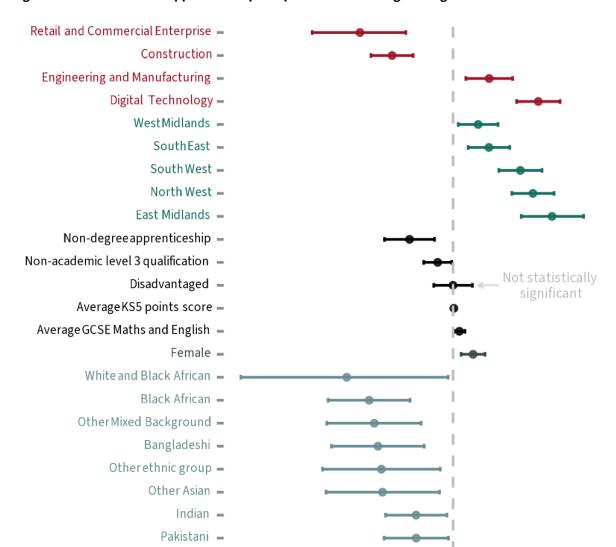


Figure 2.5: Odds ratios for apprenticeship completion from the logistic regression model

Note: The x-axis for Figure 2.5 is presented on a log scale for interpretability. As ORs are ratios, a value of 0.5 represents the same magnitude of effect as a value of 2 (halving vs doubling).

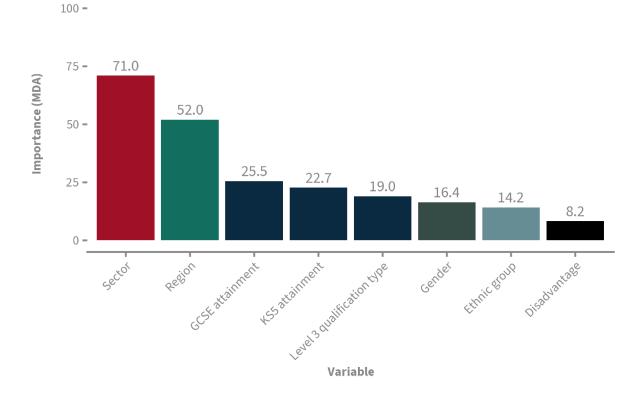
0.25

0.5

Odds Ratio

0.125

A Random Forest classification model²⁶ was also estimated to provide an alternative perspective on the factors associated with apprenticeship completion.


Figure 2.6 presents the variable importance scores from the model, measured using Mean Decrease in Accuracy (MDA). This metric reflects how much the model's predictive accuracy

²⁶ Random Forests are an ensemble machine learning method that build a large number of decision trees on random subsamples of the data and then aggregate their predictions. Unlike logistic regression, they do not rely on linearity assumptions and can capture complex, non-linear relationships between predictors and outcomes. The model used the same specification as our logistic regression model.

declines when a given variable is removed from the model, with higher values indicating stronger predictive power.

The results broadly reinforce the regression findings. Sector emerges as by far the most important predictor of completion, followed by region. Measures of prior attainment (GCSE and KS5) and level 3 qualification type also help to predict which young people will complete their apprenticeships, but to a lesser extent. Individual-level demographic characteristics such as gender, ethnicity, and disadvantage appear less important in this model to predicting apprenticeship completion, with disadvantage having very limited predictive importance.

Overall, this analysis shows that degree apprenticeships are characterised by high levels of success once learners reach the end of their training, but with substantial variation in completion and achievement across sectors and regions. Pass rates are consistently strong - indicating that most apprentices who finish their programmes go on to achieve - but many do not reach that point, particularly in construction and other applied sectors where structural and employer-related barriers appear to play a greater role.

The modelling confirms that these sectoral and regional differences remain even after accounting for individual characteristics, suggesting that contextual factors such as local labour market conditions, employer capacity, and programme delivery models are key drivers of completion. While there are some demographic differences (most notably by ethnicity) the effects of gender, disadvantage, and prior attainment are comparatively modest once other factors are controlled for.

Taken together, these findings highlight the importance of supporting employers in sectors with lower completion rates and understanding the institutional and structural challenges that affect apprentices' ability to finish their programmes, rather than focusing solely on the characteristics of individual learners.

How much do degree apprentices earn?

Degree apprentices' earnings - exploratory analysis

To compare the early-career labour market outcomes of degree apprentices with those of graduates, we have analysed earnings data from the Longitudinal Educational Outcomes (LEO) dataset, linked with individual educational records from the Individualised Learner Record (ILR) and the Higher Education Statistics Authority (HESA) dataset.

Our annualised earnings measure

Employment and earnings data cover those with P45 and P14 records submitted through the PAYE system, and do not include those in self-employment. All individuals who completed their course, were classified as in 'sustained employment' in the first full tax year following completion, and could be matched between educational and employment records for the tax years 2018-19 to 2020-21 were included in analysis. Note that that latter two of these tax years were impacted by the COVID-19 pandemic, which is likely to have affected the employment and earnings outcomes of graduates during this period.

'Sustained employment' refers to individuals who were in paid employment for at least one day in five out of six months between October and March of the given tax year. This is consistent with the definition used for the DfE measures of 16-19 accountability.

Earnings are annualised and expressed in nominal terms, with the top and bottom one per cent of earners removed from the earnings estimates. As LEO does not currently include data on number of hours worked, we cannot distinguish between part-time and full-time work. As a result, the reported earnings may underestimate the earnings of full-time graduates if graduates are more likely to be in part-time employment following completion of study than degree apprentices.

Median earnings of degree apprentices

Figure 3.1 shows median annualised earnings for the first full tax year following the completion of study (1 YAC) for degree apprentices and first-degree undergraduates aged under 25 years old at the start of their study period. The top and bottom of the box plots represent the 75th and 25th quartiles respectively. As the LEO dataset currently only includes earnings data up to the 2020-21 tax year, and our earnings estimation is taken a full year following completion of a 3-4 year course, the number of matched degree apprentices before the 2019-20 tax year is too low to be reported.

Our earnings estimation shows that in 2020-21, the average young degree apprentices earned around double that of the average graduate (£36,785 vs £18,555). This is perhaps unsurprising – apprentices were already employed and earning a wage during their study, whereas many young graduates are entering the labour market for the first time in the year following completion of their study.

60,000 -Degree apprentices £54,020 **Boxplot** key Upper quartile 50,000 -£46,785 Median £43.325 Annualised earnings (£) 40.000 -Lower quartile £36,785 £32,150 £30,255 30,000 -£23,075 £22,940 20,000 -£18,665 £18,555 £11,450 £11,015 10,000 -Undergraduates 0 -2019-2020 2020-2021 Tax year

Figure 3.1: Median annualised earnings of degree apprentices and graduates 1 YAC, 2019-20 - 2020-21

Median earnings by gender

Figure 3.2 shows the same data, split by gender of the learner. Again, limited numbers of matched apprentices in the LEO dataset prevent the reporting of figures for some years.

Our earnings estimation shows that in 2020-21, gender gaps in average annualised earnings are present for both degree apprentices and undergraduates, with males earning around £2,000 more than females on average across both qualifications. However, this sum represents a greater proportion of total earnings for undergraduates than for degree apprentices.

Our earnings measure does not capture how much of this observed earnings gap is as a result of earnings differentials across sectors, and the degree to which female degree apprentices enter into lower-earnings sectors when compared with their male counterparts. Similarly, this data only includes apprentices who completed their course before the 2019/2020 academic year, when (as observed in the previous chapter on access and participation) far fewer apprenticeship standards were available for sectors that are now largely entered by female apprentices, such as Health, Public Services, and Care, and Education and Training.

Figure 3.2: Median annualised earnings of degree apprentices and graduates 1 YAC by gender, 2019-20 – 2020-21

Median earnings by degree type

Figure 3.3 shows a table of the average annualised earnings of degree apprentices split by degree type, averaged across the 2019-20 and 2020-21 tax years. Our earnings estimation shows that on average, apprentices who completed integrated degrees earned more in the year following graduation than those on non-integrated courses.

Figure 3.3: Median annualised earnings of degree apprentices 1 YAC by degree type, 2018-19 - 2020-21 (averaged nominal value)

Degree type	Lower (25 th) quartile	Median annualised earnings	Upper (75 th) quartile	Number of apprentices
Integrated degree	£31,970	£38,645	£48,685	265
Non-integrated degree	£31,100	£35,545	£44,725	50

These descriptive results suggest that degree apprentices may be better integrated into the labour market, enter employment quickly, and benefit from higher initial salaries relative to undergraduates. The extent to which these early advantages persist into the medium term remains uncertain, and analysing future years of LEO data will be critical in determining whether these earnings gaps narrow, stabilise, or widen as cohorts progress through their careers. In addition to further descriptive results, comprehensive modelling is required to better understand

how large earnings differentials remain between degree apprentices and undergraduates after accounting for industry, prior attainment, region, and other factors that can influence wages.

Employerperspectives

Employer interviews

To supplement findings from our data analyses, we interviewed four employers; two large energy infrastructure providers, one which offers degree apprenticeships (DAs) and one which currently does not, and two smaller firms in the construction and media sectors respectively. We wanted to know how degree apprenticeships were viewed by these employers, about perceived and tangible benefits of the programme as well as challenges in implementing and supporting young people through it, and their thoughts on aspects of the scheme which could be improved. The topic guide used for interviews is available upon request. Given our small sample size, findings from these interviews are exploratory and not representative of the experiences of employers of similar size or in similar sectors.

Background information about each employer is available in the boxes below. Following this, we have summarised findings from the interviews in five areas:

- Employer needs and how degree apprenticeships serve these.
- Benefits of degree apprenticeships.
- Challenges of implementing the scheme.
- Lessons learnt supporting degree apprentices through the programme.
- Suggestions for the future of the programme.

We then pull out some key takeaways which could inform future, deeper investigation of facilitators and barriers to wider uptake and successful implementation of degree apprenticeships.

Employer characteristics

Large employer A

- **Sector:** Energy technology
- **Business model:** Project delivery organisation; sees apprenticeships as aligned with long-term delivery needs.
- Workforce size and structure: 500+ UK employees.
- Apprenticeship and graduate numbers: Two cohorts of degree apprentices (one in final year of a 4-year programme, and one in the second year of a 5-year programme). ~20 graduates. Also Level 3–5 apprentices in business, IT, and health and safety.

Large employer B

- **Sector and focus**: Energy infrastructure
- Business model: End-to-end project delivery.
- Workforce size and structure: 500+ UK employees.
- Apprenticeship and graduate numbers: ~20 Level 4 and 5 apprentices (traditional engineering) and ~20 graduates; currently no DAs.

Small employer A

- **Sector and focus:** Media company operating in financial communications, marketing, and management.
- **Business model:** Founded over 15 years ago; started DA programme a year later; apprenticeships are central to recruitment and business growth.
- Workforce size and structure: <50 employees.
- Apprenticeship and graduate numbers: <15 degree apprentices so far (mostly school leavers); no longer recruit traditional graduates. Offer Level 6 and 7 apprenticeships exclusively.

Small employer B

- **Sector and focus**: Independent consultancy in digital built environments.
- **Business model**: Founded around a decade ago; embedded apprenticeships from the start.
- Workforce size and structure: 50-100 employees.
- Apprenticeship and graduate numbers: Take on small numbers of degree

Employer needs and the role of degree apprenticeships

Across the four employers we interviewed, there is a shared recognition of the need to build talent pipelines tailored to specific business models. The three employers currently offering DAs hire mainly school leavers, and a minority of young people in their 20s.

The large employers, both global energy companies, face engineering skills gaps, recruitment challenges and ageing workforces in specialised, long-project delivery contexts. At large employer A, degree apprenticeships are seen as a mechanism which could help build long-term, project-specific expertise within the organisation – helping to 'grow the workforce organically' – similar to the role played by graduate hires. Large employer B are growing rapidly, but with constrained access to skilled labour in the UK, often resulting in hiring from abroad; concerns were cited about the impact of stricter immigration policies. Given the rapid rate of the energy transition in the UK, 'what [they] delivered in the last 20 to 30 years [they] need to deliver in five years' referencing the mass electrification of vehicles and weaning off natural gas. As they do not currently offer DAs, they see them as a potential tool for both early career joiners and career transitioners, particularly for retraining professionals from declining sectors like oil and gas.

Contrary to the larger firms (large employer A has employed only a relatively small number of degree apprentices and large employer B currently does not), **the smaller employers** had been participating in the DA scheme since shortly after they were founded. At small employer B, a data centre construction consultancy, skills shortages were also an issue, and the need for longer-term thinking around workforce development was cited as a priority at small employer A, a financial communications agency. Crucially both interviewees emphasised the cost-effectiveness of degree apprenticeships in helping to meet these needs. Small employer A especially cited the 'commercial imperative' of being able to compete with much larger agencies by dint of employing degree apprentices.

Benefits of degree apprenticeships

There was a range of feedback in interviews around the benefits, and challenges, of employing degree apprentices.

Discussions with the two large employers were focused more on anticipated benefits of degree apprenticeships. For large employer A, who has two cohorts of apprentices in 4+ year programmes, the potential benefit lies in the capability of these apprentices to embed knowledge in the business over the long lifecycle of projects, some of which are multi-decade. Degree apprenticeships are seen as 'really suited to those kind of longer-term project deliveries' as by the end of a project employees might be using legacy software or capabilities. The fact that degree apprentices 'recruit more local' as opposed to graduate schemes is 'quite good from a retention perspective' and means that young engineers may build their whole career within the organisation. Large employer B, while still early in its exploration of the DA programme, anticipates similar benefits, particularly for reskilling professionals coming from other related sectors. DAs are also seen as more targeted and aligned with real-world industry needs than

traditional degrees; graduates 'still need to be retrained anyway' and at the end of a degree apprenticeship, individuals may be 'in a much better place' compared with a traditional degree.

The two smaller employers, who have longer experience with the DA programme, were highly enthusiastic about the benefits degree apprenticeships had yielded for their firms. For both firms, the cost effectiveness of employing degree apprentices was a key benefit.

At small employer A, DAs have become central to the workforce strategy, with apprentices performing increasingly well in both adaptability and commercial impact. They cite faster time to value (beginning at a year, then down to six months, now as little as four months), stronger client relationships and a higher level of innovation as direct benefits of investing significant staff time and expertise in apprentices. They also highlight the benefit of simultaneous learning and application of that learning for apprentices:

...the theories of someone at Deloitte from five years ago, things move on really quickly in our market and it's useful context, but they can't challenge it yet. So in a degree apprentice environment, they're challenging all the time because they get told something, they bring it to the office, we discuss it, we apply it. They try and work with a client account or with our own products and they go "that doesn't work" and then when they're writing on the academic [side], they're able to pull it apart and go "oh well you know this research is useful as a starting hypothesis, but here's all the real-world advantages to not doing it that way".

They no longer hire graduates citing that degree apprenticeships 'work better for us as a business'.

For small employer B, the benefits are also long proven: degree apprentices are productive in a relatively short time and clients 'start paying for them in one to two years', stay with the company long term, and are seen as more mouldable, humble, and motivated than university graduates. The benefits for apprentices of 'combining the two worlds '[,the academic side and on-the-job experience,] from the outset' was also highlighted: 'When you're doing something technical, something which [is] more hands on [it] makes so much more sense to do it as an apprenticeship scheme'. Their degree apprentices now occupy chartered roles and are expected to become future senior leaders – 'the whole programme has been a huge success'.

Challenges of implementing degree apprenticeships

Large employer A cited their most significant challenge as the general expectation that degree apprentices would 'come in at a certain level, [...] closer to what a graduate level might typically be, but in reality they're coming in significantly below that level because they've not had any university experience'. In their experience, degree apprentices lacked the foundational knowledge and independence typical of graduates, requiring more support, structured development, and expectation management. They explained that the number of taught credits in the standards offered by many training providers - in comparison with a traditional university degree - is 'a challenge' for them, and means that apprentices 'will not be able to go into the depth and the breadth that a traditional university degree will do' just because of time and capacity. It can be difficult to find work apprentices can 'usefully do' in the early stages of their apprenticeship

because 'they don't have the prerequisite knowledge' to work with high voltage electricity, which is fundamentally a safety issue.

As a result, large employer A has had to adjust their approach, starting degree apprentices in the manufacturing department for hands-on experience and providing supplementary training to ensure they acquire essential engineering fundamentals. This experience meant that:

We are certainly looking at the relative priority with which we focus on graduate recruitment and degree apprentice recruitment and at the moment it doesn't appear that the trade-off favours degree apprenticeships because of the relative training needs, funding requirements, and timescale to permanent post.

Large employer B, which has not yet implemented DAs but is exploring them, identified cultural and operational barriers. These included the persistent perception that apprenticeships are only suitable for technical or hands-on roles (and engineering roles are currently being filled by lower-level apprentices in the firm), a lack of understanding of the value of the combined academic and vocational nature of degree apprenticeships and the perception that apprentices are 'less competent' than graduates, resistance from time-poor managers, and limited internal resource to provide the required mentoring and structure, particularly in leaner back-office functions. They also raised concerns about whether the degree structure was the most efficient model for skills development.

Both smaller firms faced some challenges particularly early on but, largely because of more years of experience with the scheme and time to learn and adapt their approach, emphasised that the benefits of the programme far outweighed any challenges. Small employer B cited early challenges in securing senior buy-in and underestimated the support apprentices need in basic workplace skills like using Excel. Over time, they learned to pace their intake and build more structured support systems, and stressed that strong and sustained internal investment is crucial for the success of the programme. Similarly small employer A emphasised the substantial involvement needed from staff to recruit, train, and support apprentices properly. They found that success depends on deep involvement from line managers from the recruitment process on and warned that organisations with more rigid or HR-led recruitment may struggle to replicate their success. Both employers also mentioned the rigidity of standards: the fact that apprentices can't switch during the programme if they decide the standard is not for them. The 'massive variation' in provider quality was also an issue for small employer A. They emphasised that if something goes wrong on the provider's end – for example, when an institution pulled out of their partnership at the last minute after the contract with the apprentice had already been signed – employers are left to pick up the pieces and there are no consequences for the provider.

Supporting apprentices through the programme

Across the three employers which currently offer degree apprenticeships, some lessons have emerged about what it takes to support degree apprentices successfully, although all emphasised that they think there is still work to do on this score, and the learning process is ongoing.

Large employer A highlighted the importance of integrating apprentices into long-term projects to ensure continuity and meaningful contribution, noting that long-term planning is key to aligning learning with business needs. They also recognised the value of close relationships with providers like Warwick to ensure consistency in delivery.

The two smaller firms have seen several cohorts of degree apprentices through to, and past, end point assessment with high levels of retention. Both emphasised the importance of treating apprentices as members of staff from day one, never 'putting them in a corner' or giving them projects 'where they're just shuffling stationary'; they invite them into client meetings, onto site visits, to events around the world, and support them in building professional relationships.

Small employer A stressed that apprentices thrive when employers, and specifically the individuals in whose teams' apprentices will be working, actively invest time in recruitment, training, and academic support. They found that structured additional tuition and designated study days dramatically improved outcomes and made apprentices commercially viable much faster.

Small employer B has built structured support mechanisms into their programme from the start, including mentoring, peer-to-peer teaching, buddy systems, and exposure to real client work, learning early on that apprentices need significant help building professional basics. They emphasised the importance of an inclusive and non-hierarchical culture where apprentices are treated as full team members and given responsibility from the outset. They involve the more senior degree apprentices in the structured training of younger apprentices, a type of peer support they find feeds into a 'positive learning culture'. They also provide intensive support with the academic side of the degree apprenticeship:

I expect my guys to get firsts because we give them that support when they get assignments, we give them a one-to-one session and to make sure [...] we even get four or five, we get the owners like me or my very senior C-Suite levels, we get them into a room and we put the question on the board and we give them our opinion on what they should be writing.

If we don't have the skill set within our business we put them in touch with external engineers, architects [...] so we can bring in all this resource from the industry to support them.

Suggestions for the future of degree apprenticeships

Across the four interviews, employers expressed a strong belief in the potential of degree apprenticeships but also identified areas for improvement.

Large employer A emphasised the need for more consistent quality across providers as well as the amount of time it can take for degree apprentices to learn specialist technical skills:

Generally it seems that the apprentices are two years in before they really start to get some of those specialist skills. There will perhaps be one or two modules where

they're looking at those specifics [...] specialist skills where they might get a year or more of content in a traditional university degree.

They suggested that more, or even sole, focus on specific technical training in electrical engineering standards, while relying on employers to impart the skills and behaviours side of KSBs²⁷, could help with this. Additionally, they wondered if reviewing the cap on apprenticeship fees could facilitate training providers in incorporating more content in standards which has so far been removed to reduce costs.

Despite large employer A's size, the point was raised that larger employers which take on hundreds of apprentices can tailor courses to their needs along with the question of how employers with fewer degree apprentices can access equally relevant standards and providers.

Large employer B offered reflections from a more exploratory standpoint, proposing more modular and shorter-form learning options, better branding of apprenticeships to challenge misconceptions, and publicly available case studies exploring successful degree apprenticeships to help overcome scepticism and boost take-up. They also saw opportunities in using (and promoting the use of) DAs for career transitioners, especially in fast-changing sectors like energy.

Both small employer A and small employer B highlighted that businesses can really benefit from DAs if they invest seriously in them. Both advocated for not outsourcing recruitment to HR and the need for weekly structured in-house training. Small employer A suggested more funding flexibility, for example, allowing some levy money to support employer-delivered training.

Key takeaways and implications

Below we draw out takeaways, and briefly cover the policy implications of these takeaways, from across the four employer interviews. As mentioned in the introduction to this section, our small sample size means we must be wary of drawing conclusions about the programme as a whole from the experiences of these employers.

The level of technical knowledge and skill required, and the length of time it takes to acquire this, to contribute usefully to the employer's activities varies significantly across sectors and may affect a young person's experience of the apprenticeship.

Within our small group of interviewees, this was a clear dividing line between the larger, energy sector employers, and the smaller employers working in less 'hard' technical fields. In the smaller firms, the fact that degree apprentices were able to bring in money to the firm within a period of months was one of the reasons the programme is viewed as so successful by these employers; at the same time, rapidly reaching commercial viability for apprentices is necessary for these firms' competitiveness, unlike with the larger firms. These interviews raise questions about the extent to which firms rely on, and therefore invest staff time and resource into, recruiting and supporting degree apprentices – and

43

²⁷ Knowledge, Skills, and Behaviours. These are the core attributes apprentices must demonstrate to complete their apprenticeship, and usually the basis for end point assessments.

how this relates to young people's experience of the programme, the amount of support they receive from the employer with their studies, and how invested they feel in the work of the firm. The extent to which smaller v larger firms have the capacity and resources to invest in supporting apprentices like this is also a major part of this equation.

- There can be a significant learning curve for employers when implementing the programme and being able to adapt is key. While both small employers were further along in their journey of employing degree apprentices than the larger employers, it was clear across all three which currently offer them that a number of difficulties needed to be ironed out initially: these included gaps in training and knowledge, ensuring the right level of senior buy-in to ensure apprentices are supported, and finding areas and tasks to which apprentices could usefully contribute. This raises questions about the extent to which differently sized employers with more vs less well-established processes can adapt these in order to maximise benefits from the scheme and support and include young apprentices effectively.
- To benefit significantly from the programme employers may have to invest more time and resource than initially anticipated or made clear by the government. The benefits cited by the two smaller firms were conditional on: a very involved and lengthy recruitment process by senior members of staff, weekly structured training, and support for apprentices with their academic work. For the larger employer currently offering DAs, the level of support apprentices required relative to graduates was a major factor in their consideration of whether to continue to offer the programme.
- The importance of keeping learning relevant and the 'rigidity' of standards is a concern for employers. There is ongoing tension between academic requirements and employer needs and while we have only covered the employer perspective through these interviews all employers offering DAs found they had to adapt or do more themselves to make up for this.
- Variation in provider quality is also an ongoing issue. All employers raised this as a concern, with some having had negative experiences with unreliable providers and all having had to supplement learning on the academic side with structured training, in particular the smaller firms, who want and require apprentices to meaningfully contribute to the business within a relatively short period of time.

Together, these reflections suggest a need to consider how funding, guidance and infrastructure could be tailored to better support different types (in terms of sector and size) of employers. Further research into sectoral and organisational variation in uptake and outcomes for school-leaving degree apprentices is also necessary to better understand the specific facilitators of and barriers to more widespread uptake of degree apprenticeships.

Conclusion and recommendations

A decade after their introduction, degree apprenticeships have become an established feature of England's higher education and skills landscape, having grown rapidly in scale and scope. For employers, they represent a way to build skills pipelines aligned with business needs; for learners, they offer the opportunity to gain a degree without taking on tuition fee debt. Yet despite this success, participation remains uneven, with access and outcomes differing substantially across social groups, sectors, and regions.

Our analysis shows that degree apprenticeships are attracting high-attaining young people, particularly those from non-disadvantaged backgrounds. Among disadvantaged students who do participate, levels of prior attainment are often similar to their less-disadvantaged peers, suggesting that this pathway has so far benefited a relatively select group of disadvantaged young people rather than widening participation more broadly. Degree apprenticeships are therefore complementing - but not yet transforming - the higher education landscape in terms of social mobility.

Completion and achievement rates remain strong overall, particularly compared with other apprenticeship levels, but vary widely by sector. While sectors such as digital, education, and science have high achievement rates, construction, business, and retail continue to struggle. Our modelling suggests that these differences may arise from structural factors such as employer capacity, local labour markets, and the design of apprenticeship standards rather than the characteristics of individual apprentices. However, ethnicity also emerges as a persistent factor associated with completion, underlining the need for more inclusive recruitment and support practices.

Exploratory analysis of earnings data provides an encouraging picture of the potential returns to degree apprenticeships. Young degree apprentices earn, on average, substantially more than university graduates in the year after completion, although longer-term data is needed to understand whether these early advantages persist. Employer interviews reinforce this message, revealing high satisfaction with the scheme's impact on skills, retention, and productivity, particularly among smaller firms that have embedded apprenticeships into their workforce strategies. However, they also point to challenges in implementation: variability in provider quality, rigidity of apprenticeship standards, and the significant investment of time and support required from employers to make degree apprenticeships work effectively.

Taken together, these findings point to a maturing system that is delivering strong outcomes for those who access it but remains uneven in who benefits. Expanding access and strengthening support for disadvantaged learners, while reducing the burden on employers will be key to realising the full potential of degree apprenticeships as a vehicle for social mobility and economic growth.

To achieve this, we make the following recommendations:

- The government has recently taken steps to increase the proportion of disadvantaged young people accessing higher education, for example through the reintroduction of maintenance grants for selected courses. A similar approach should be extended to degree apprenticeships to widen participation. This could be achieved through expanding the eligibility (and when funding permits, the scale of support) of existing direct, ring-fenced top-up funds employers can currently claim through training providers for young apprentices with education, health and care (EHC) plans or those who have been in care²⁸. In addition to incentivising employers to recruit from disadvantaged groups, such a mechanism would also enable employers to provide the higher levels of support disadvantaged apprentices often require. While this additional support would come at a cost to the exchequer, the highly selective nature of degree apprenticeships suggests that these young people would likely have otherwise attended university, where prospective costs are higher still.
- To stimulate demand from disadvantaged young people, the government should use targeted outreach. For example, those HE providers providing off the job-training for degree apprenticeships should be encouraged to promote access to degree apprenticeships, as part of their access and participation plans.
- In order to tackle the low completion rates within some sectors, and among some ethnic groups, the government should continue to develop resources and tools to allow the sharing of best practices for employers taking on degree apprentices and their training providers. For example, the Education Endowment Fund or the Youth Futures Foundation could broaden their respective scopes to include what works to support access to, and achievement of, apprenticeships.
- There is a need to continue to build the evidence base on access to, and the benefits of degree apprenticeships. Alongside its graduate outcomes statistics, DfE should publish average earnings for degree apprentices, at different ages. It should also publish widening participation statistics for degree apprenticeships, showing the proportion of degree apprentices from disadvantaged areas or backgrounds, and how this is changing over time. Furthermore, DfE must continue to update the employment and earnings data available through the Longitudinal Educational Outcomes (LEO) dataset to allow researchers to further analyse the impact of degree apprenticeships, as well as other education reforms, such as T levels.

-

²⁸ GOV.UK, Get funding for apprenticeship training. https://www.gov.uk/employing-an-apprentice/get-funding

Appendices

Appendix A: Model results

Variable	Odds Ratio	Std. Error	95% CI (Lower–Upper)	p-value	n
Socio-economic background					
Disadvantaged (FSM)	1.00	0.10	0.82 - 1.22	0.996	5,645
Prior attainment					
Average GCSE Maths & English	1.07	0.03	1.01 – 1.13	0.025 *	5,645
Average KS5 point score	1.01	0.00	1.00 - 1.01	0.004 **	5,645
Ethnicity (ref: White British)					
Bangladeshi	0.46	0.24	0.29 - 0.74	0.001 **	80
Indian	0.68	0.16	0.50 - 0.94	0.018 *	195
Other Asian	0.48	0.30	0.27 - 0.87	0.014 *	55
Pakistani	0.68	0.17	0.49 – 0.95	0.025 *	175
Black African	0.42	0.21	0.28 - 0.64	<0.001 ***	110
Other Mixed Background	0.45	0.25	0.27 - 0.72	0.001 **	75
White & Black African	0.34	0.54	0.11 - 0.95	0.041 *	15
Other ethnic group	0.48	0.31	0.26 - 0.88	0.016 *	50
(Other small groups not sig.)	_	-	-	-	-
Gender (ref: Male)					
Female	1.23	0.06	1.09 – 1.39	0.001 **	5,645
Sector (ref: Business, Administration and Law)					
Health & Care	0.93	0.09	0.78 - 1.12	0.455	1,835
Science & Mathematics	6.60	0.62	2.27 – 28.03	0.002 **	35
Engineering & Manufacturing	1.45	0.12	1.14 - 1.84	0.002 **	645

Construction	0.53	0.11	0.43 - 0.66	<0.001 ***	815
Digital Technology	2.40	0.11	1.92 - 3.00	<0.001 ***	945
Retail & Commercial Enterprise	0.38	0.24	0.23 - 0.62	<0.001 ***	90
Education & Training	8.98	0.26	5.47 – 15.37	<0.001 ***	170
Region (ref: London)					
East Midlands	2.76	0.16	2.02 - 3.83	<0.001 ***	265
East of England	1.24	0.14	0.94 - 1.64	0.127	295
North East	1.30	0.18	0.92 - 1.84	0.140	180
North West	2.27	0.11	1.83 - 2.82	<0.001 ***	780
South East	1.44	0.11	1.17 - 1.79	0.001 **	760
South West	2.00	0.11	1.60 - 2.50	<0.001 ***	650
West Midlands	1.29	0.10	1.05 – 1.59	0.014 *	800
Yorkshire & Humber	0.90	0.11	0.73 - 1.10	0.306	820
Level 3 qualification route (ref: Academic)					
Non-academic qualification	0.85	0.07	0.74-0.99	<0.001 ***	5646

Significance: * p < 0.05; ** p < 0.01; *** p < 0.001.

Model diagnostics

McFadden Pseudo R² test: 0.066

AUC: 0.67

Appendix B: Data sources

For our analysis on access, participation, and outcomes, the following data sources were used (unless otherwise listed):

- Individualised Learner Record (ILR): the primary data record for further education and work-based learning in England, used to gather learner aims and outcomes of level 6 apprenticeships.
- Higher Education Statistics Authority (HESA) dataset: the data record for higher education student records, used to gather undergraduate student courses and outcomes.
- **National Pupil Database (NPD):** a dataset of pupils' educational records in state-funded education, used to collect students' demographic, characteristic, and educational attainment data for linking to apprentice and undergraduate datasets.
- Young Person's Matched Administrative Dataset (YPMAD): a dataset of students' level of attainment at age 19, used to determine individual's level 3 qualification pathway.
- Longitudinal Educational Outcomes (LEO): a dataset linking individuals' education data with their employment, benefits and earnings data, used to calculate our earnings estimates.